示例#1
0
def transformer(model='base', **kwargs):
    """
    Load Malaya transformer encoder-decoder model to generate a paraphrase given a string.

    Parameters
    ----------
    model : str, optional (default='base')
        Model architecture supported. Allowed values:

        * ``'malaya-small'`` - Malaya Transformer SMALL parameters.
        * ``'malaya-base'`` - Malaya Transformer BASE parameters.

    Returns
    -------
    result: malaya.model.tf.PARAPHRASE class
    """

    model = model.lower()
    if model not in _transformer_availability:
        raise ValueError(
            'model not supported, please check supported models from malaya.paraphrase.available_transformer()'
        )

    from malaya.model.tf import PARAPHRASE

    return transformer_load.load_lm(
        path=PATH_PARAPHRASE['transformer'],
        s3_path=S3_PATH_PARAPHRASE['transformer'],
        model=model,
        model_class=PARAPHRASE,
        **kwargs,
    )
示例#2
0
def transformer(model: str = 't2t', quantized: bool = False, **kwargs):
    """
    Load Malaya transformer encoder-decoder model to generate a paraphrase given a string.

    Parameters
    ----------
    model : str, optional (default='t2t')
        Model architecture supported. Allowed values:

        * ``'t2t'`` - Malaya Transformer BASE parameters.
        * ``'small-t2t'`` - Malaya Transformer SMALL parameters.
        * ``'t5'`` - T5 BASE parameters.
        * ``'small-t5'`` - T5 SMALL parameters.

    quantized : bool, optional (default=False)
        if True, will load 8-bit quantized model. 
        Quantized model not necessary faster, totally depends on the machine.

    Returns
    -------
    result: model
        List of model classes:
        
        * if `t2t` in model, will return `malaya.model.tf.Paraphrase`.
        * if `t5` in model, will return `malaya.model.t5.Paraphrase`.
    """

    model = model.lower()
    if model not in _transformer_availability:
        raise ValueError(
            'model not supported, please check supported models from `malaya.paraphrase.available_transformer()`.'
        )

    if 't2t' in model:
        return transformer_load.load_lm(
            module='paraphrase',
            model=model,
            model_class=TF_Paraphrase,
            quantized=quantized,
            **kwargs,
        )
    if 't5' in model:
        return t5_load.load(
            module='paraphrase',
            model=model,
            model_class=T5_Paraphrase,
            quantized=quantized,
            **kwargs,
        )
示例#3
0
def transformer(model: str = 'base', **kwargs):
    model = model.lower()
    if model not in _transformer_availability:
        raise ValueError(
            'model not supported, please check supported models from malaya.summarization.abstractive.available_transformer()'
        )
    from malaya.model.tf import SUMMARIZATION

    return transformer_load.load_lm(
        path = PATH_SUMMARIZE['transformer'],
        s3_path = S3_PATH_SUMMARIZE['transformer'],
        model = model,
        model_class = SUMMARIZATION,
        **kwargs,
    )
示例#4
0
def transformer(model: str = 'base', quantized: bool = False, **kwargs):
    """
    Load Malaya transformer encoder-decoder model to generate a paraphrase given a string.

    Parameters
    ----------
    model : str, optional (default='base')
        Model architecture supported. Allowed values:

        * ``'small'`` - Malaya Transformer SMALL parameters.
        * ``'base'`` - Malaya Transformer BASE parameters.

    quantized : bool, optional (default=False)
        if True, will load 8-bit quantized model. 
        Quantized model not necessary faster, totally depends on the machine.

    Returns
    -------
    result: malaya.model.tf.PARAPHRASE class
    """

    model = model.lower()
    if model not in _transformer_availability:
        raise ValueError(
            'model not supported, please check supported models from `malaya.paraphrase.available_transformer()`.'
        )

    from malaya.model.tf import PARAPHRASE

    return transformer_load.load_lm(
        path=PATH_PARAPHRASE['transformer'],
        s3_path=S3_PATH_PARAPHRASE['transformer'],
        model=model,
        model_class=PARAPHRASE,
        quantized=quantized,
        **kwargs,
    )
示例#5
0
def transformer(model: str = 't2t', quantized: bool = False, **kwargs):
    """
    Load Malaya transformer encoder-decoder model to generate a summary given a string.

    Parameters
    ----------
    model : str, optional (default='base')
        Model architecture supported. Allowed values:

        * ``'t2t'`` - Malaya Transformer BASE parameters.
        * ``'small-t2t'`` - Malaya Transformer SMALL parameters.
        * ``'t5'`` - T5 BASE parameters.
        * ``'small-t5'`` - T5 SMALL parameters.
        * ``'bigbird'`` - BigBird + Pegasus BASE parameters.
        * ``'small-bigbird'`` - BigBird + Pegasus SMALL parameters.
    
    quantized : bool, optional (default=False)
        if True, will load 8-bit quantized model. 
        Quantized model not necessary faster, totally depends on the machine.

    Returns
    -------
    result: model
        List of model classes:
        
        * if `t2t` in model, will return `malaya.model.tf.Summarization`.
        * if `t5` in model, will return `malaya.model.t5.Summarization`.
        * if `bigbird` in model, will return `malaya.model.bigbird.Summarization`.
    """

    model = model.lower()
    if model not in _transformer_availability:
        raise ValueError(
            'model not supported, please check supported models from `malaya.summarization.abstractive.available_transformer()`.'
        )

    if 't2t' in model:
        return transformer_load.load_lm(
            module='abstractive-summarization',
            model=model,
            model_class=TF_Summarization,
            quantized=quantized,
            **kwargs,
        )

    if 't5' in model:
        return t5_load.load(
            module='abstractive-summarization',
            model=model,
            model_class=T5_Summarization,
            quantized=quantized,
            **kwargs,
        )

    if 'bigbird' in model:
        return bigbird_load.load_lm(
            module='abstractive-summarization',
            model=model,
            model_class=BigBird_Summarization,
            maxlen=_transformer_availability[model]['Suggested length'],
            quantized=quantized,
            **kwargs,
        )