示例#1
0
def default_mcts_parameters():
    parameters = MctsParameters()
    parameters.DISCOUNT_FACTOR = 0.9
    parameters.RANDOM_SEED = 1000
    parameters.MAX_SEARCH_TIME = 1000
    parameters.MAX_NUMBER_OF_ITERATIONS = 10000
    parameters.MAX_SEARCH_DEPTH = 1000
    parameters.MAX_NUMBER_OF_NODES = 10000

    parameters.random_heuristic.MAX_SEARCH_TIME = 10
    parameters.random_heuristic.MAX_NUMBER_OF_ITERATIONS = 1000

    parameters.uct_statistic.LOWER_BOUND = -1000
    parameters.uct_statistic.UPPER_BOUND = 100
    parameters.uct_statistic.EXPLORATION_CONSTANT = 0.7
    parameters.uct_statistic.PROGRESSIVE_WIDENING_ALPHA = 0.2
    parameters.uct_statistic.PROGRESSIVE_WIDENING_K = 0.1

    parameters.hypothesis_statistic.COST_BASED_ACTION_SELECTION = True
    parameters.hypothesis_statistic.PROGRESSIVE_WIDENING_HYPOTHESIS_BASED = True
    parameters.hypothesis_statistic.LOWER_COST_BOUND = 0
    parameters.hypothesis_statistic.UPPER_COST_BOUND = 1
    parameters.hypothesis_statistic.PROGRESSIVE_WIDENING_ALPHA = 0.5
    parameters.hypothesis_statistic.PROGRESSIVE_WIDENING_K = 1
    parameters.hypothesis_statistic.EXPLORATION_CONSTANT = 0.7

    parameters.hypothesis_belief_tracker.RANDOM_SEED_HYPOTHESIS_SAMPLING = 1000
    parameters.hypothesis_belief_tracker.HISTORY_LENGTH = 4
    parameters.hypothesis_belief_tracker.PROBABILITY_DISCOUNT = 1.0
    parameters.hypothesis_belief_tracker.POSTERIOR_TYPE = HypothesisBeliefTracker.PosteriorType.PRODUCT

    return parameters
示例#2
0
    def test_pickle_unpickle(self):
        from mamcts import MctsParameters, HypothesisBeliefTracker
        from mamcts import CrossingStateDefaultParametersFloat, CrossingStateDefaultParametersInt

        params_mcts = MctsParameters()
        params_mcts.DISCOUNT_FACTOR = 0.9
        params_mcts.RANDOM_SEED = 1000
        params_mcts.MAX_SEARCH_TIME = 1232423
        params_mcts.MAX_NUMBER_OF_ITERATIONS = 2315677
        params_mcts.random_heuristic.MAX_SEARCH_TIME = 10
        params_mcts.random_heuristic.MAX_NUMBER_OF_ITERATIONS = 1000

        params_mcts.uct_statistic.LOWER_BOUND = -1000
        params_mcts.uct_statistic.UPPER_BOUND = 100
        params_mcts.uct_statistic.EXPLORATION_CONSTANT = 0.7

        params_mcts.hypothesis_statistic.COST_BASED_ACTION_SELECTION = True
        params_mcts.hypothesis_statistic.PROGRESSIVE_WIDENING_HYPOTHESIS_BASED = True
        params_mcts.hypothesis_statistic.LOWER_COST_BOUND = 0
        params_mcts.hypothesis_statistic.UPPER_COST_BOUND = 1
        params_mcts.hypothesis_statistic.PROGRESSIVE_WIDENING_ALPHA = 0.5
        params_mcts.hypothesis_statistic.PROGRESSIVE_WIDENING_K = 1
        params_mcts.hypothesis_statistic.EXPLORATION_CONSTANT = 0.7

        params_mcts.hypothesis_belief_tracker.RANDOM_SEED_HYPOTHESIS_SAMPLING = 1000
        params_mcts.hypothesis_belief_tracker.HISTORY_LENGTH = 4
        params_mcts.hypothesis_belief_tracker.PROBABILITY_DISCOUNT = 1.0
        params_mcts.hypothesis_belief_tracker.POSTERIOR_TYPE = HypothesisBeliefTracker.PosteriorType.PRODUCT
        params_mcts.hypothesis_belief_tracker.FIXED_HYPOTHESIS_SET = {
            1: 5,
            10: 4,
            3: 100
        }
        params_mcts_unpickle = pu(params_mcts)
        self.assertTrue(is_equal_mcts_params(params_mcts,
                                             params_mcts_unpickle))

        params_crossing_state = CrossingStateDefaultParametersFloat()
        params_crossing_state_unpickle = pu(params_crossing_state)
        self.assertTrue(
            is_equal_crossing_state_params(params_crossing_state,
                                           params_crossing_state_unpickle))

        params_crossing_state = CrossingStateDefaultParametersInt()
        params_crossing_state_unpickle = pu(params_crossing_state)
        self.assertTrue(
            is_equal_crossing_state_params(params_crossing_state,
                                           params_crossing_state_unpickle))