示例#1
0
def pairwise_comp(data, cty_prop, prop_list, params, sig_level=0.05):
    """
    Pairwise comparison of parameters between cell-types 
    """

    diff_param_list = []
    p_val_list = []

    for param in params:
        for comb in combinations(prop_list, 2):
            cty_x, cty_y = comb
            paramx = data.loc[data[cty_prop] == cty_x, param].values
            paramy = data.loc[data[cty_prop] == cty_y, param].values
            _, p_val_x = mannwhitneyu(paramx, paramy, alternative='less')
            _, p_val_y = mannwhitneyu(paramy, paramx, alternative='less')
            comp_type = '%s<%s' % (
                cty_x, cty_y) if p_val_x < p_val_y else '%s<%s' % (cty_y, cty_x)
            p_val = min(p_val_x, p_val_y)
            sig_dict = {'Comp_type': comp_type,
                        'param': param}
            diff_param_list.append(sig_dict)
            p_val_list.append(p_val)

    # FDR correction for multiple comparison
    _, p_val_corrected = fdrcorrection(p_val_list)

    diff_param_df = pd.DataFrame(diff_param_list)
    diff_param_df['p_val'] = p_val_corrected
    diff_param_df['sig_level'] = diff_param_df['p_val'].apply(
        lambda x: man_utils.pval_to_sig(x))

    return diff_param_df
示例#2
0
def draw_significance(mu_dist1, mu_dist2, pval, ax, height_offset=.1):
    sig_text = man_utils.pval_to_sig(pval)
    bin_dist1, _ = np.histogram(mu_dist1, density=True, bins=10)
    bin_dist2, _ = np.histogram(mu_dist2, density=True, bins=10)
    mean_dist1 = np.mean(mu_dist1)
    mean_dist2 = np.mean(mu_dist2)
    y_height1 = np.max(bin_dist1)
    y_height2 = np.max(bin_dist2)
    max_y_height = (1 + height_offset) * np.max([y_height1, y_height2])
    ax.plot([mean_dist1, mean_dist1, mean_dist2, mean_dist2],
            [y_height1, max_y_height, max_y_height, y_height2],
            color='k')
    ax.text((mean_dist1 + mean_dist2) * .5,
            max_y_height,
            sig_text,
            ha='center',
            va='bottom',
            color='k')
    return ax
示例#3
0
def sig_test(feature_df):
    diff_ephys_df = []
    p_val_list = []
    for efeat in all_renamed_feats:
        for comb in combinations(inh_subclasses, 2):  # 2 for pairs, 3 for triplets, etc
            subclass_x_idx, subclass_y_idx = comb
            subclass_x_idx_efeat = feature_df.loc[feature_df.ttype == subclass_x_idx, efeat].values
            subclass_y_idx_efeat = feature_df.loc[feature_df.ttype == subclass_y_idx, efeat].values
            _, p_val = mannwhitneyu(subclass_x_idx_efeat,
                                    subclass_y_idx_efeat, alternative='two-sided')
            comp_type = '%s~%s' % (subclass_x_idx, subclass_y_idx)
            sig_dict = {'comp_type': comp_type,
                        'feature': efeat}
            diff_ephys_df.append(sig_dict)
            p_val_list.append(p_val)

    _, p_val_corrected = fdrcorrection(p_val_list)

    diff_ephys_df = pd.DataFrame(diff_ephys_df)
    diff_ephys_df['p_val'] = p_val_corrected
    diff_ephys_df['sig_level'] = diff_ephys_df['p_val'].apply(lambda x: man_utils.pval_to_sig(x))
    return diff_ephys_df
示例#4
0
    inter_mask_blkdiag = np.kron(
        inter_mask_cell, np.ones((len(unique_cell_ids), len(unique_cell_ids))))

    masked_intra_conductance = np.multiply(conductance_dist_matrix,
                                           intra_mask_blkdiag).flatten()
    masked_intra_conductance = masked_intra_conductance[
        masked_intra_conductance != 0]
    masked_inter_conductance = np.multiply(conductance_dist_matrix,
                                           inter_mask_blkdiag).flatten()
    masked_inter_conductance = masked_inter_conductance[
        masked_inter_conductance != 0]
    _, p_less_ = mannwhitneyu(masked_intra_conductance,
                              masked_inter_conductance,
                              alternative='less')

    sig_text = man_utils.pval_to_sig(p_less_)

    intra_dist[subclass_] = masked_intra_conductance.tolist()
    inter_dist[subclass_] = masked_inter_conductance.tolist()

    axis_fontsize = 14
    tick_fontsize = 12
    legend_fontsize = axis_fontsize
    ax[ii // 2, ii % 2] = sns.distplot(intra_dist[subclass_],
                                       norm_hist=True,
                                       ax=ax[ii // 2, ii % 2],
                                       hist_kws={'label': 'intra'},
                                       color=intra_cell_intra_class_col)
    ax[ii // 2, ii % 2] = sns.distplot(inter_dist[subclass_],
                                       norm_hist=True,
                                       ax=ax[ii // 2, ii % 2],
            cre_x, cre_y) if p_val_x < p_val_y else '%s<%s' % (cre_y, cre_x)
        p_val = min(p_val_x, p_val_y)
        sig_dict = {
            'Comp_type': comp_type,
            'gene': gene_,
        }
        diff_gene_expression_df.append(sig_dict)
        p_val_list.append(p_val)

# FDR correction @5%
_, p_val_corrected = fdrcorrection(p_val_list)

diff_gene_expression_df = pd.DataFrame(diff_gene_expression_df)
diff_gene_expression_df['p_val'] = p_val_corrected
diff_gene_expression_df['sig_level'] = diff_gene_expression_df['p_val'].apply(
    lambda x: man_utils.pval_to_sig(x))
diff_gene_expression_df = diff_gene_expression_df.loc[
    diff_gene_expression_df.sig_level != 'n.s.', ]
gene_sig_grouped = diff_gene_expression_df.groupby('gene')

exc_expression_melted = pd.melt(exc_expression_data,
                                id_vars=['sample_id', 'Cre_line'],
                                value_vars=h_genes,
                                var_name='gene',
                                value_name='cpm')

exc_expression_melted['Cre_gene'] = exc_expression_melted.apply(
    lambda x: x.gene + '.' + x.Cre_line, axis=1)
comp_types = exc_expression_melted['Cre_gene'].unique().tolist()
data_types = exc_expression_melted.gene.unique().tolist()
    for comb in combinations(inh_lines, 2):  # 2 for pairs, 3 for triplets, etc
        cre_x,cre_y = comb
        cre_x_efeat = select_spiking_df.loc[select_spiking_df.Cre_line == cre_x,efeat].values
        cre_y_efeat = select_spiking_df.loc[select_spiking_df.Cre_line == cre_y,efeat].values
        _,p_val = mannwhitneyu(cre_x_efeat,cre_y_efeat,alternative='two-sided')
        comp_type = '%s~%s'%(cre_x,cre_y)
        sig_dict = {'comp_type' : comp_type,
            'feature': efeat}
        diff_ephys_df.append(sig_dict)
        p_val_list.append(p_val)
        
_,p_val_corrected = fdrcorrection(p_val_list)

diff_ephys_df = pd.DataFrame(diff_ephys_df)
diff_ephys_df['p_val'] = p_val_corrected
diff_ephys_df['sig_level'] = diff_ephys_df['p_val'].apply(lambda x: man_utils.pval_to_sig(x))

spiking_melt_df = pd.melt(select_spiking_df,id_vars=['Cell_id','Cre_line'],
                          value_vars=all_renamed_feats,var_name='features',value_name='value')

# filtered ME cells
filtered_me_inh_cells =  utility.load_pickle(filtered_me_inh_cells_filename)
spiking_melt_df = spiking_melt_df.loc[spiking_melt_df.Cell_id.isin(filtered_me_inh_cells),]

ylim_list = [1.6, 60,220, 2.0]

sns.set(style='whitegrid')
fig,ax = plt.subplots(1,len(all_renamed_feats),sharey=False,figsize=(12,3))
for ii,feat_ in enumerate(all_renamed_feats):
    data = spiking_melt_df.loc[spiking_melt_df.features == feat_,]
    
示例#7
0
    'Model': sag_features_model,
    #             'Rbp4like':sag_perturbed_Rbp4,
    #             'Nr5like':sag_perturbed_Nr5
}

sig_dict_list = []
for type_, data_ in data_dict.items():

    feat_Rbp4 = data_.loc[data_.Cre_line == "Rbp4-Cre_KL100",
                          select_sag_feature].values
    feat_Nr5 = data_.loc[data_.Cre_line == "Nr5a1-Cre",
                         select_sag_feature].values
    _, p_val = mannwhitneyu(feat_Nr5, feat_Rbp4, alternative='two-sided')
    sig_dict_list.append({
        'data_type': type_,
        'sig_level': man_utils.pval_to_sig(p_val),
        'Comp_type': "Nr5a1-Cre~Rbp4-Cre_KL100"
    })

sig_df = pd.DataFrame(sig_dict_list)
ephys_sig_group = sig_df.groupby('data_type')
sig_vars = sig_df.data_type.tolist()

sag_features_all = pd.concat(
    [
        sag_features_exp,
        sag_features_exp_selected,
        sag_features_model,
        #sag_perturbed_Rbp4,sag_perturbed_Nr5
    ],
    sort=False)