def unregister(stub, model_name): try: response = stub.UnregisterModel(management_pb2.UnregisterModelRequest(model_name=model_name)) print(f"Model {model_name} unregistered successfully") except grpc.RpcError as e: print(f"Failed to unregister model {model_name}.") print(str(e.details())) exit(1)
def test_inference_apis(): with open(os.path.dirname(__file__) + inference_data_json, 'rb') as f: test_data = json.loads(f.read()) for item in test_data: if item['url'].startswith('{{mar_path_'): path = test_utils.mar_file_table[item['url'][2:-2]] else: path = item['url'] managment_stub = test_gRPC_utils.get_management_stub() response = managment_stub.RegisterModel( management_pb2.RegisterModelRequest(url=path, initial_workers=item['worker'], synchronous=bool( item['synchronous']), model_name=item['model_name'])) print(response.msg) model_input = os.path.dirname(__file__) + "/../" + item['file'] prediction = __infer(test_gRPC_utils.get_inference_stub(), item['model_name'], model_input) print("Prediction is : ", str(prediction)) if 'expected' in item: try: prediction = literal_eval(prediction) except SyntaxError: pass if isinstance(prediction, list) and 'tolerance' in item: assert len(prediction) == len(item['expected']) for i in range(len(prediction)): assert __get_change( prediction[i], item['expected'][i]) < item['tolerance'] elif isinstance(prediction, dict) and 'tolerance' in item: assert len(prediction) == len(item['expected']) for key in prediction: assert __get_change( prediction[key], item['expected'][key]) < item['tolerance'] else: assert str(prediction) == str(item['expected']) response = managment_stub.UnregisterModel( management_pb2.UnregisterModelRequest( model_name=item['model_name'], )) print(response.msg)
def unregister(stub, model_name): response = stub.UnregisterModel( management_pb2.UnregisterModelRequest(model_name=model_name)) return response