def test_avail(): # Get the available methods method_list = available_emission_line_modeling_methods() assert len(method_list) > 0, 'No emission-line-modeling methods available' # For the available methods, make sure that the ancillary databases # and templates can be loaded. for method in method_list: if method['artifacts'] is not None: artdb = ArtifactDB.from_key(method['artifacts']) if method['ism_mask'] is not None: emldb = EmissionLineDB.from_key(method['ism_mask']) if method['emission_lines'] is not None: emldb = EmissionLineDB.from_key(method['emission_lines']) if method['continuum_tpl_key'] is not None: tpl = TemplateLibrary(method['continuum_tpl_key'], match_resolution=False, velscale_ratio=1, spectral_step=1e-4, log=True, hardcopy=False) if method['fitpar'] is None: continue if 'continuum_templates' in method['fitpar'].keys() \ and method['fitpar']['continuum_templates'] is not None: tpl = TemplateLibrary(method['fitpar']['continuum_templates'], match_resolution=False, velscale_ratio=1, spectral_step=1e-4, log=True, hardcopy=False)
def test_pixelmask(): specfile = data_test_file('MaNGA_test_spectra.fits.gz') hdu = fits.open(specfile) pixelmask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPSCMSK')) assert numpy.sum(pixelmask.boolean(hdu['WAVE'].data, nspec=1)) == 489, \ 'Incorrect number of masked pixels'
def test_init_all(): wave = numpy.logspace(*numpy.log10([3600., 10000.]), 4563) velscale = spectrum_velocity_scale(wave) dbs = EmissionLineDB.available_databases() for key in dbs.keys(): if 'MSK' in key: continue emldb = EmissionLineDB.from_key(key) etpl = EmissionLineTemplates(wave, velscale, emldb=emldb)
def test_moments_with_continuum(): # Read the data specfile = data_test_file('MaNGA_test_spectra.fits.gz') hdu = fits.open(specfile) drpbm = DRPFitsBitMask() flux = numpy.ma.MaskedArray(hdu['FLUX'].data, mask=drpbm.flagged( hdu['MASK'].data, MaNGADataCube.do_not_fit_flags())) ferr = numpy.ma.power(hdu['IVAR'].data, -0.5) flux[ferr.mask] = numpy.ma.masked ferr[flux.mask] = numpy.ma.masked nspec = flux.shape[0] # Instantiate the template libary velscale_ratio = 4 tpl = TemplateLibrary('MILESHC', match_resolution=False, velscale_ratio=velscale_ratio, spectral_step=1e-4, log=True, hardcopy=False) tpl_sres = numpy.mean(tpl['SPECRES'].data, axis=0) # Get the pixel mask pixelmask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPSCMSK')) # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # Perform the fit fit_wave, fit_flux, fit_mask, fit_par \ = ppxf.fit(tpl['WAVE'].data.copy(), tpl['FLUX'].data.copy(), hdu['WAVE'].data, flux, ferr, hdu['Z'].data, numpy.full(nspec, 100.), iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=velscale_ratio, mask=pixelmask, matched_resolution=False, tpl_sres=tpl_sres, obj_sres=hdu['SRES'].data, degree=8, moments=2) # Remask the continuum fit sc_continuum = StellarContinuumModel.reset_continuum_mask_window( numpy.ma.MaskedArray(fit_flux, mask=fit_mask > 0)) # Read the database that define the emission lines and passbands momdb = EmissionMomentsDB.from_key('ELBMILES') # Measure the moments elmombm = EmissionLineMomentsBitMask() elmom = EmissionLineMoments.measure_moments(momdb, hdu['WAVE'].data, flux, continuum=sc_continuum, redshift=hdu['Z'].data, bitmask=elmombm) # Measure the EW based on the moments include_band = numpy.array([numpy.invert(momdb.dummy)]*nspec) \ & numpy.invert(elmombm.flagged(elmom['MASK'], flag=['BLUE_EMPTY', 'RED_EMPTY'])) line_center = (1.0 + hdu['Z'].data)[:, None] * momdb['restwave'][None, :] elmom['BMED'], elmom['RMED'], pos, elmom['EWCONT'], elmom['EW'], elmom['EWERR'] \ = emission_line_equivalent_width(hdu['WAVE'].data, flux, momdb['blueside'], momdb['redside'], line_center, elmom['FLUX'], redshift=hdu['Z'].data, line_flux_err=elmom['FLUXERR'], include_band=include_band) # Check the flags reference = { 'BLUE_INCOMP': 21, 'MAIN_JUMP': 0, 'UNDEFINED_MOM2': 42, 'JUMP_BTWN_SIDEBANDS': 0, 'RED_JUMP': 0, 'DIVBYZERO': 0, 'NO_ABSORPTION_CORRECTION': 0, 'RED_EMPTY': 21, 'UNDEFINED_BANDS': 8, 'DIDNOTUSE': 0, 'UNDEFINED_MOM1': 0, 'FORESTAR': 0, 'NON_POSITIVE_CONTINUUM': 0, 'LOW_SNR': 0, 'MAIN_EMPTY': 21, 'BLUE_JUMP': 0, 'RED_INCOMP': 21, 'MAIN_INCOMP': 21, 'BLUE_EMPTY': 21 } assert numpy.all([ reference[k] == numpy.sum(elmombm.flagged(elmom['MASK'], flag=k)) for k in elmombm.keys() ]), 'Number of flagged measurements changed' # Check that the values are finite assert numpy.all([ numpy.all(numpy.isfinite(elmom[n])) for n in elmom.dtype.names]), \ 'Found non-finite values in output' # Check the band definitions assert numpy.all(numpy.equal(elmom['REDSHIFT'], hdu['Z'].data)), 'Redshift changed' assert numpy.all(numpy.isclose(numpy.mean(momdb['blueside'], axis=1)[None,:], elmom['BCEN']/(1+hdu['Z'].data[:,None])) | elmombm.flagged(elmom['MASK'], flag='UNDEFINED_BANDS')), \ 'Blue passband center incorrect' assert numpy.all(numpy.isclose(numpy.mean(momdb['redside'], axis=1)[None,:], elmom['RCEN']/(1+hdu['Z'].data[:,None])) | elmombm.flagged(elmom['MASK'], flag='UNDEFINED_BANDS')), \ 'Red passband center incorrect' # Check the values assert numpy.all( numpy.absolute(elmom['FLUX'][0] - numpy.array([ 0.63, 0.00, 0.22, -1.32, -0.88, -0.68, -0.44, -0.13, -1.14, -0.07, -0.11, 0.01, 0.38, 0.73, 0.71, 0.44, 0.08, 0.74, 1.30, 2.34, 0.55, 0.44 ])) < 0.01), 'Fluxes too different' assert numpy.all(numpy.absolute(elmom['MOM1'][0] - numpy.array([ 14682.6, 0.0, 14843.2, 14865.8, 14890.4, 14404.7, 14208.6, 12376.0, 14662.5, 14148.5, 15804.1, 17948.4, 14874.5, 14774.9, 14840.5, 14746.0, 15093.1, 14857.8, 14839.0, 14840.2, 14876.0, 14859.5])) < 0.1), \ '1st moments too different' assert numpy.all(numpy.absolute(elmom['MOM2'][0] - numpy.array([322.2, 0.0, 591.4, 436.4, 474.6, 0.0, 0.0, 0.0, 364.6, 0.0, 0.0, 0.0, 289.1, 226.9, 282.6, 283.8, 227.0, 207.7, 207.7, 253.6, 197.0, 212.4])) < 0.1), \ '2nd moments too different' assert numpy.all(numpy.absolute(elmom['EW'][0] - numpy.array([ 0.63, 0.00, 0.20, -1.28, -0.76, -0.54, -0.30, -0.09, -0.61, -0.03, -0.04, 0.00, 0.13, 0.25, 0.24, 0.13, 0.02, 0.22, 0.38, 0.69, 0.17, 0.13])) < 0.01), \ 'EW too different'
def test_sasuke(): # Read the data specfile = data_test_file('MaNGA_test_spectra.fits.gz') hdu = fits.open(specfile) drpbm = DRPFitsBitMask() flux = numpy.ma.MaskedArray(hdu['FLUX'].data, mask=drpbm.flagged( hdu['MASK'].data, MaNGADataCube.do_not_fit_flags())) ferr = numpy.ma.power(hdu['IVAR'].data, -0.5) flux[ferr.mask] = numpy.ma.masked ferr[flux.mask] = numpy.ma.masked nspec = flux.shape[0] # Instantiate the template libary velscale_ratio = 4 tpl = TemplateLibrary('MILESHC', match_resolution=False, velscale_ratio=velscale_ratio, spectral_step=1e-4, log=True, hardcopy=False) tpl_sres = numpy.mean(tpl['SPECRES'].data, axis=0) # Get the pixel mask pixelmask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPSCMSK')) # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # Perform the fit sc_wave, sc_flux, sc_mask, sc_par \ = ppxf.fit(tpl['WAVE'].data.copy(), tpl['FLUX'].data.copy(), hdu['WAVE'].data, flux, ferr, hdu['Z'].data, numpy.full(nspec, 100.), iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=velscale_ratio, mask=pixelmask, matched_resolution=False, tpl_sres=tpl_sres, obj_sres=hdu['SRES'].data, degree=8, moments=2) # Mask the 5577 sky line pixelmask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Read the emission line fitting database emldb = EmissionLineDB.from_key('ELPMILES') assert emldb['name'][ 18] == 'Ha', 'Emission-line database names or ordering changed' # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # Perform the fit el_wave, model, el_flux, el_mask, el_fit, el_par \ = emlfit.fit(emldb, hdu['WAVE'].data, flux, obj_ferr=ferr, obj_mask=pixelmask, obj_sres=hdu['SRES'].data, guess_redshift=hdu['Z'].data, guess_dispersion=numpy.full(nspec, 100.), reject_boxcar=101, stpl_wave=tpl['WAVE'].data, stpl_flux=tpl['FLUX'].data, stpl_sres=tpl_sres, stellar_kinematics=sc_par['KIN'], etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=velscale_ratio, matched_resolution=False) # Rejected pixels assert numpy.sum(emlfit.bitmask.flagged(el_mask, flag='PPXF_REJECT')) == 266, \ 'Different number of rejected pixels' # Unable to fit assert numpy.array_equal(emlfit.bitmask.flagged_bits(el_fit['MASK'][5]), ['NO_FIT']), \ 'Expected NO_FIT in 6th spectrum' # No *attempted* fits should fail assert numpy.sum(emlfit.bitmask.flagged(el_fit['MASK'], flag='FIT_FAILED')) == 0, \ 'Fits should not fail' # Number of used templates assert numpy.array_equal(numpy.sum(numpy.absolute(el_fit['TPLWGT']) > 1e-10, axis=1), [25, 22, 34, 32, 27, 0, 16, 22]), \ 'Different number of templates with non-zero weights' # No additive coefficients assert numpy.all(el_fit['ADDCOEF'] == 0), \ 'No additive coefficients should exist' # No multiplicative coefficients assert numpy.all(el_fit['MULTCOEF'] == 0), \ 'No multiplicative coefficients should exist' # Fit statistics assert numpy.all( numpy.absolute( el_fit['RCHI2'] - numpy.array([2.34, 1.22, 1.58, 1.88, 3.20, 0., 1.05, 0.88])) < 0.02 ), 'Reduced chi-square are too different' assert numpy.all( numpy.absolute(el_fit['RMS'] - numpy.array( [0.036, 0.019, 0.036, 0.024, 0.051, 0.000, 0.012, 0.012])) < 0.001 ), 'RMS too different' assert numpy.all(numpy.absolute(el_fit['FRMS'] - numpy.array([0.021, 0.025, 0.025, 0.033, 0.018, 0.000, 1.052, 0.101])) < 0.001), \ 'Fractional RMS too different' assert numpy.all(numpy.absolute(el_fit['RMSGRW'][:,2] - numpy.array([0.070, 0.038, 0.071, 0.047, 0.101, 0.000, 0.026, 0.024])) < 0.001), \ 'Median absolute residual too different' # All lines should have the same velocity assert numpy.all(numpy.all(el_par['KIN'][:,:,0] == el_par['KIN'][:,None,0,0], axis=1)), \ 'All velocities should be the same' # Test velocity values # TODO: Need some better examples! assert numpy.all(numpy.absolute(el_par['KIN'][:,0,0] - numpy.array([14704.9, 14869.3, 14767.1, 8161.9, 9258.7, 0.0, 5130.9, 5430.3])) < 0.1), \ 'Velocities are too different' # H-alpha dispersions assert numpy.all(numpy.absolute(el_par['KIN'][:,18,1] - numpy.array([1000.5, 1000.5, 224.7, 124.9, 171.2, 0.0, 81.2, 50.0])) < 1e-1), \ 'H-alpha dispersions are too different'
x, y, directory_path=directory_path) # Fitting functions expect data to be in 2D arrays (for now): flux = flux.reshape(1, -1) ferr = numpy.ma.power(ivar, -0.5).reshape(1, -1) sres = sres.reshape(1, -1) #------------------------------------------------------------------- # Fit the stellar continuum # Mask the 5577 sky line and the emission lines sc_pixel_mask = SpectralPixelMask( artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPSCMSK')) # Construct the template library sc_tpl = TemplateLibrary(sc_tpl_key, tpllib_list=tpllib_list, match_resolution=False, velscale_ratio=velscale_ratio, spectral_step=1e-4, log=True, hardcopy=False) sc_tpl_sres = numpy.mean(sc_tpl['SPECRES'].data, axis=0).ravel() # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # Perform the fit
def test_read(): dbs = EmissionLineDB.available_databases() assert len(dbs) > 0, 'No emission-line databases available' for key in dbs.keys(): emldb = EmissionLineDB.from_key(key)
def test_mpl11(): emldb = EmissionLineDB.from_key('ELPMPL11') assert len(emldb) == 35, 'Incorrect number of emission lines' assert 'ArIII' in emldb['name'], 'Does not contain ArIII in list'
def test_ppxffit(): # Read the data specfile = data_test_file('MaNGA_test_spectra.fits.gz') hdu = fits.open(specfile) drpbm = DRPFitsBitMask() flux = numpy.ma.MaskedArray(hdu['FLUX'].data, mask=drpbm.flagged( hdu['MASK'].data, MaNGADataCube.do_not_fit_flags())) ferr = numpy.ma.power(hdu['IVAR'].data, -0.5) flux[ferr.mask] = numpy.ma.masked ferr[flux.mask] = numpy.ma.masked nspec = flux.shape[0] # Instantiate the template libary velscale_ratio = 4 tpl = TemplateLibrary('MILESHC', match_resolution=False, velscale_ratio=velscale_ratio, spectral_step=1e-4, log=True, hardcopy=False) tpl_sres = numpy.mean(tpl['SPECRES'].data, axis=0) # Get the pixel mask pixelmask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPSCMSK')) # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # Perform the fit fit_wave, fit_flux, fit_mask, fit_par \ = ppxf.fit(tpl['WAVE'].data.copy(), tpl['FLUX'].data.copy(), hdu['WAVE'].data, flux, ferr, hdu['Z'].data, numpy.full(nspec, 100.), iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=velscale_ratio, mask=pixelmask, matched_resolution=False, tpl_sres=tpl_sres, obj_sres=hdu['SRES'].data, degree=8, moments=2) # Test the results # Rejected pixels assert numpy.sum(ppxf.bitmask.flagged(fit_mask, flag='PPXF_REJECT')) == 119, \ 'Different number of rejected pixels' # Unable to fit assert numpy.array_equal(ppxf.bitmask.flagged_bits(fit_par['MASK'][5]), ['NO_FIT']), \ 'Expected NO_FIT in 6th spectrum' # Number of used templates assert numpy.array_equal(numpy.sum(numpy.absolute(fit_par['TPLWGT']) > 1e-10, axis=1), [12, 13, 17, 15, 15, 0, 8, 12]), \ 'Different number of templates with non-zero weights' # Number of additive coefficients assert fit_par['ADDCOEF'].shape[ 1] == 9, 'Incorrect number of additive coefficients' # No multiplicative coefficients assert numpy.all(fit_par['MULTCOEF'] == 0), \ 'No multiplicative coefficients should exist' # Kinematics and errors assert numpy.all(numpy.absolute(fit_par['KIN'] - numpy.array([[ 14880.7, 292.9], [ 15053.4, 123.2], [ 14787.5, 236.4], [ 8291.8, 169.7], [ 9261.4, 202.7], [ 0.0, 0.0], [ 5123.5, 63.8], [ 5455.6, 51.8]])) < 0.1), \ 'Kinematics are too different' assert numpy.all(numpy.absolute(fit_par['KINERR'] - numpy.array([[2.0,1.9], [1.5,1.7], [ 2.4, 2.4], [2.2,2.3], [1.1,1.1], [0.0,0.0], [26.1,30.8], [4.7,7.5]])) < 0.1), \ 'Kinematic errors are too different' # Velocity dispersion corrections assert numpy.all(numpy.absolute(fit_par['SIGMACORR_SRES'] - numpy.array([23.5, 10.1, 27.3, 38.7, 22.3, 0.0, 63.8, 23.8])) < 0.1), \ 'SRES corrections are too different' assert numpy.all(numpy.absolute(fit_par['SIGMACORR_EMP'] - numpy.array([22.6, 0.0, 26.0, 38.2, 18.0, 0.0, 70.1, 0.0])) < 0.1), \ 'EMP corrections are too different' # Figures of merit assert numpy.all(numpy.absolute(fit_par['RCHI2'] - numpy.array([ 1.94, 1.18, 1.40, 1.53, 2.50, 0.00, 1.06, 0.86])) < 0.01), \ 'Reduced chi-square too different' assert numpy.all( numpy.absolute(fit_par['RMS'] - numpy.array( [0.033, 0.019, 0.034, 0.023, 0.046, 0.000, 0.015, 0.015])) < 0.001 ), 'RMS too different' assert numpy.all( numpy.absolute(fit_par['FRMS'] - numpy.array( [0.018, 0.023, 0.023, 0.032, 0.018, 0.000, 33.577, 0.148])) < 0.001 ), 'Fractional RMS too different' assert numpy.all( numpy.absolute(fit_par['RMSGRW'][:, 2] - numpy.array( [0.067, 0.037, 0.068, 0.046, 0.093, 0.000, 0.029, 0.027])) < 0.001 ), 'Median absolute residual too different'
def test_eml_channel_names(): emldb = EmissionLineDB.from_key('ELPMPL11') names = emldb.channel_names() assert 'Ha-6564' in list(names.keys()) assert names['OII-3727'] == 0
def test_emldb(): emldb = EmissionLineDB.from_key('ELPMPL11') assert emldb.size == 35 _emldb = EmissionLineDB(emldb.file) assert _emldb.size == 35
# same spectral resolution. Otherwise, one cannot freely combine # the spectra to fit the Doppler broadening of the galaxy spectrum # in a robust (constrained) way (without substantially more # effort). There should be no difference between what's done below # and simply taking the spectral resolution to be that of the first # template spectrum (i.e., sc_tpl['SPECRES'].data[0]) sc_tpl_sres = numpy.mean(sc_tpl['SPECRES'].data, axis=0).ravel() # Now we want to construct a pixel mask that excludes regions with # known artifacts and emission lines. The 'BADSKY' artifact # database only masks the 5577, which can have strong left-over # residuals after sky-subtraction. The list of emission lines (set # by the ELPMPL8 keyword) can be different from the list of # emission lines fit below. sc_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPMPL8')) # Instantiate the fitting class, including the mask that it should # use to flag the data. [[This mask should just be default...]] ppxf = PPXFFit(StellarContinuumModelBitMask()) # The following call performs the fit to the spectrum. Specifically # note that the code only fits the first two moments, uses an # 8th-order additive polynomial, and uses the 'no_global_wrej' # iteration mode. See # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.ppxffit.html#mangadap.proc.ppxffit.PPXFFit.fit cont_wave, cont_flux, cont_mask, cont_par \ = ppxf.fit(sc_tpl['WAVE'].data.copy(), sc_tpl['FLUX'].data.copy(), wave, flux, ferr, z, dispersion, iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=sc_velscale_ratio, mask=sc_pixel_mask, matched_resolution=False, tpl_sres=sc_tpl_sres, obj_sres=sres, degree=8,
def main(): t = time.perf_counter() arg = parse_args() if not os.path.isfile(arg.inp): raise FileNotFoundError('No file: {0}'.format(arg.inp)) directory_path = os.getcwd( ) if arg.output_root is None else os.path.abspath(arg.output_root) if not os.path.isdir(directory_path): os.makedirs(directory_path) data_file = os.path.abspath(arg.inp) fit_file = os.path.join(directory_path, arg.out) flag_db = None if arg.spec_flags is None else os.path.abspath( arg.spec_flags) # Read the data spectral_step = 1e-4 wave, flux, ferr, sres, redshift, fit_spectrum = object_data( data_file, flag_db) nspec, npix = flux.shape dispersion = numpy.full(nspec, 100., dtype=numpy.float) # fit_spectrum[:] = False # fit_spectrum[0] = True # fit_spectrum[171] = True # fit_spectrum[791] = True # Mask spectra that should not be fit indx = numpy.any(numpy.logical_not(numpy.ma.getmaskarray(flux)), axis=1) & fit_spectrum flux[numpy.logical_not(indx), :] = numpy.ma.masked print('Read: {0}'.format(arg.inp)) print('Contains {0} spectra'.format(nspec)) print(' each with {0} pixels'.format(npix)) print('Fitting {0} spectra.'.format(numpy.sum(fit_spectrum))) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the stellar continuum # Construct the template library sc_tpl = TemplateLibrary(arg.sc_tpl, match_resolution=False, velscale_ratio=arg.sc_vsr, spectral_step=spectral_step, log=True, hardcopy=False) # Set the spectral resolution sc_tpl_sres = numpy.mean(sc_tpl['SPECRES'].data, axis=0).ravel() # Set the pixel mask sc_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPMPL8')) # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # The following call performs the fit to the spectrum. Specifically # note that the code only fits the first two moments, uses an # 8th-order additive polynomial, and uses the 'no_global_wrej' # iteration mode. See # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.ppxffit.html#mangadap.proc.ppxffit.PPXFFit.fit cont_wave, cont_flux, cont_mask, cont_par \ = ppxf.fit(sc_tpl['WAVE'].data.copy(), sc_tpl['FLUX'].data.copy(), wave, flux, ferr, redshift, dispersion, iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=arg.sc_vsr, mask=sc_pixel_mask, matched_resolution=False, tpl_sres=sc_tpl_sres, obj_sres=sres, degree=arg.sc_deg, moments=2) #, plot=True) if arg.sc_only: write(fit_file, wave, cont_flux, cont_mask, cont_par) print('Elapsed time: {0} seconds'.format(time.perf_counter() - t)) return # if numpy.any(cont_par['KIN'][:,1] < 0): # embed() # exit() #------------------------------------------------------------------- #------------------------------------------------------------------- #------------------------------------------------------------------- # Measure the emission-line moments # # Remask the continuum fit # sc_continuum = StellarContinuumModel.reset_continuum_mask_window( # numpy.ma.MaskedArray(cont_flux, mask=cont_mask>0)) # # Read the database that define the emission lines and passbands # momdb = EmissionMomentsDB.from_key(arg.el_band) # # Measure the moments # elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=sc_continuum, # redshift=redshift) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the emission-line model # Set the emission-line continuum templates if different from those # used for the stellar continuum if arg.sc_tpl == arg.el_tpl: # If the keywords are the same, just copy over the previous # library and the best fitting stellar kinematics el_tpl = sc_tpl el_tpl_sres = sc_tpl_sres stellar_kinematics = cont_par['KIN'].copy() else: # If the template sets are different, we need to match the # spectral resolution to the galaxy data and use the corrected # velocity dispersions. _sres = SpectralResolution(wave, sres[0, :], log10=True) el_tpl = TemplateLibrary(arg.el_tpl, sres=_sres, velscale_ratio=arg.el_vsr, spectral_step=spectral_step, log=True, hardcopy=False) el_tpl_sres = numpy.mean(el_tpl['SPECRES'].data, axis=0).ravel() stellar_kinematics = cont_par['KIN'].copy() stellar_kinematics[:, 1] = numpy.ma.sqrt( numpy.square(cont_par['KIN'][:, 1]) - numpy.square(cont_par['SIGMACORR_SRES'])).filled(0.0) # if numpy.any(cont_par['KIN'][:,1] < 0): # embed() # exit() # # if numpy.any(stellar_kinematics[:,1] < 0): # embed() # exit() # Mask the 5577 sky line el_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Read the emission line fitting database emldb = EmissionLineDB.from_key(arg.el_list) # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # TODO: Improve the initial velocity guess using the first moment... # Perform the fit elfit_time = time.perf_counter() model_wave, model_flux, eml_flux, model_mask, eml_fit_par, eml_eml_par \ = emlfit.fit(emldb, wave, flux, obj_ferr=ferr, obj_mask=el_pixel_mask, obj_sres=sres, guess_redshift=redshift, guess_dispersion=dispersion, reject_boxcar=101, stpl_wave=el_tpl['WAVE'].data, stpl_flux=el_tpl['FLUX'].data, stpl_sres=el_tpl_sres, stellar_kinematics=stellar_kinematics, etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=arg.el_vsr, matched_resolution=False, mdegree=arg.el_deg, ensemble=False)#, plot=True) print('EML FIT TIME: ', time.perf_counter() - elfit_time) # Line-fit metrics (should this be done in the fit method?) eml_eml_par = EmissionLineFit.line_metrics(emldb, wave, flux, ferr, model_flux, eml_eml_par, model_mask=model_mask, bitmask=emlfit.bitmask) # Equivalent widths EmissionLineFit.measure_equivalent_width(wave, flux, emldb, eml_eml_par, bitmask=emlfit.bitmask, checkdb=False) # Measure the emission-line moments # - Model continuum continuum = StellarContinuumModel.reset_continuum_mask_window(model_flux - eml_flux) # - Updated redshifts fit_redshift = eml_eml_par['KIN'][:,numpy.where(emldb['name'] == 'Ha')[0][0],0] \ / astropy.constants.c.to('km/s').value # - Set the moment database momdb = EmissionMomentsDB.from_key(arg.el_band) # - Set the moment bitmask mombm = EmissionLineMomentsBitMask() # - Measure the moments elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, ivar=numpy.ma.power(ferr, -2), continuum=continuum, redshift=fit_redshift, bitmask=mombm) # - Select the bands that are valid include_band = numpy.array([numpy.logical_not(momdb.dummy)]*nspec) \ & numpy.logical_not(mombm.flagged(elmom['MASK'], flag=['BLUE_EMPTY', 'RED_EMPTY'])) # - Set the line center at the center of the primary passband line_center = (1.0 + fit_redshift)[:, None] * momdb['restwave'][None, :] elmom['BMED'], elmom['RMED'], pos, elmom['EWCONT'], elmom['EW'], elmom['EWERR'] \ = emission_line_equivalent_width(wave, flux, momdb['blueside'], momdb['redside'], line_center, elmom['FLUX'], redshift=fit_redshift, line_flux_err=elmom['FLUXERR'], include_band=include_band) # - Flag non-positive measurements indx = include_band & numpy.logical_not(pos) elmom['MASK'][indx] = mombm.turn_on(elmom['MASK'][indx], 'NON_POSITIVE_CONTINUUM') # - Set the binids elmom['BINID'] = numpy.arange(nspec) elmom['BINID_INDEX'] = numpy.arange(nspec) write(fit_file, wave, cont_flux, cont_mask, cont_par, model_flux=model_flux, model_mask=model_mask, eml_flux=eml_flux, eml_fit_par=eml_fit_par, eml_eml_par=eml_eml_par, elmom=elmom) print('Elapsed time: {0} seconds'.format(time.perf_counter() - t))
def main(): t = time.perf_counter() #------------------------------------------------------------------- # Read spectra to fit. The following reads a single MaNGA spectrum. # This is where you should read in your own spectrum to fit. # Plate-IFU to use plt = 7815 ifu = 3702 # Spaxel coordinates x = 25 #30 y = 25 #37 # Where to find the relevant datacube. This example accesses the test data # that can be downloaded by executing the script here: # https://github.com/sdss/mangadap/blob/master/download_test_data.py directory_path = defaults.dap_source_dir() / 'data' / 'remote' # Read a spectrum wave, flux, ivar, sres = get_spectra(plt, ifu, x, y, directory_path=directory_path) # In general, the DAP fitting functions expect data to be in 2D # arrays with shape (N-spectra,N-wave). So if you only have one # spectrum, you need to expand the dimensions: flux = flux.reshape(1,-1) ivar = ivar.reshape(1,-1) ferr = numpy.ma.power(ivar, -0.5) sres = sres.reshape(1,-1) # The majority (if not all) of the DAP methods expect that your # spectra are binned logarithmically in wavelength (primarily # because this is what pPXF expects). You can either have the DAP # function determine this value (commented line below) or set it # directly. The value is used to resample the template spectra to # match the sampling of the spectra to fit (up to some integer; see # velscale_ratio). # spectral_step = spectral_coordinate_step(wave, log=True) spectral_step = 1e-4 # Hereafter, the methods expect a wavelength vector, a flux array # with the spectra to fit, an ferr array with the 1-sigma errors in # the flux, and sres with the wavelength-dependent spectral # resolution, R = lambda / Dlambda #------------------------------------------------------------------- #------------------------------------------------------------------- # The DAP needs a reasonable guess of the redshift of the spectrum # (within +/- 2000 km/s). In this example, I'm pulling the redshift # from the DRPall file. There must be one redshift estimate per # spectrum to fit. Here that means it's a single element array # This example accesses the test data # that can be downloaded by executing the script here: # https://github.com/sdss/mangadap/blob/master/download_test_data.py drpall_file = directory_path / f'drpall-{drp_test_version}.fits' z = numpy.array([get_redshift(plt, ifu, drpall_file)]) print('Redshift: {0}'.format(z[0])) # The DAP also requires an initial guess for the velocity # dispersion. A guess of 100 km/s is usually robust, but this may # depend on your spectral resolution. dispersion = numpy.array([100.]) #------------------------------------------------------------------- #------------------------------------------------------------------- # The following sets the keyword for the template spectra to use # during the fit. You can specify different template sets to use # during the stellar-continuum (stellar kinematics) fit and the # emission-line modeling. # Templates used in the stellar continuum fits sc_tpl_key = 'MILESHC' # Templates used in the emission-line modeling el_tpl_key = 'MASTARSSP' # You also need to specify the sampling for the template spectra. # The templates must be sampled with the same pixel step as the # spectra to be fit, up to an integer factor. The critical thing # for the sampling is that you do not want to undersample the # spectral resolution element of the template spectra. Here, I set # the sampling for the MILES templates to be a factor of 4 smaller # than the MaNGA spectrum to be fit (which is a bit of overkill # given the resolution difference). I set the sampling of the # MaStar templates to be the same as the galaxy data. # Template pixel scale a factor of 4 smaller than galaxy data sc_velscale_ratio = 4 # Template sampling is the same as the galaxy data el_velscale_ratio = 1 # You then need to identify the database that defines the # emission-line passbands (elmom_key) for the non-parametric # emission-line moment calculations, and the emission-line # parameters (elfit_key) for the Gaussian emission-line modeling. # See # https://sdss-mangadap.readthedocs.io/en/latest/emissionlines.html. elmom_key = 'ELBMPL9' elfit_key = 'ELPMPL11' # If you want to also calculate the spectral indices, you can # provide a keyword that indicates the database with the passband # definitions for both the absorption-line and bandhead/color # indices to measure. The script allows these to be None, if you # don't want to calculate the spectral indices. See # https://sdss-mangadap.readthedocs.io/en/latest/spectralindices.html absindx_key = 'EXTINDX' bhdindx_key = 'BHBASIC' # Now we want to construct a pixel mask that excludes regions with # known artifacts and emission lines. The 'BADSKY' artifact # database only masks the 5577, which can have strong left-over # residuals after sky-subtraction. The list of emission lines (set # by the ELPMPL8 keyword) can be different from the list of # emission lines fit below. sc_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPMPL11')) # Mask the 5577 sky line el_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Finally, you can set whether or not to show a set of plots. # # Show the ppxf-generated plots for each fit stage. fit_plots = False # Show summary plots usr_plots = True #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the stellar continuum # First, we construct the template library. The keyword that # selects the template library (sc_tpl_key) is defined above. The # following call reads in the template library and processes the # data to have the appropriate pixel sampling. Note that *no* # matching of the spectral resolution to the galaxy spectrum is # performed. sc_tpl = TemplateLibrary(sc_tpl_key, match_resolution=False, velscale_ratio=sc_velscale_ratio, spectral_step=spectral_step, log=True, hardcopy=False) # This calculation of the mean spectral resolution is a kludge. The # template library should provide spectra that are *all* at the # same spectral resolution. Otherwise, one cannot freely combine # the spectra to fit the Doppler broadening of the galaxy spectrum # in a robust (constrained) way (without substantially more # effort). There should be no difference between what's done below # and simply taking the spectral resolution to be that of the first # template spectrum (i.e., sc_tpl['SPECRES'].data[0]) sc_tpl_sres = numpy.mean(sc_tpl['SPECRES'].data, axis=0).ravel() # Instantiate the fitting class, including the mask that it should # use to flag the data. [[This mask should just be default...]] ppxf = PPXFFit(StellarContinuumModelBitMask()) # The following call performs the fit to the spectrum. Specifically # note that the code only fits the first two moments, uses an # 8th-order additive polynomial, and uses the 'no_global_wrej' # iteration mode. See # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.ppxffit.html#mangadap.proc.ppxffit.PPXFFit.fit cont_wave, cont_flux, cont_mask, cont_par \ = ppxf.fit(sc_tpl['WAVE'].data.copy(), sc_tpl['FLUX'].data.copy(), wave, flux, ferr, z, dispersion, iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=sc_velscale_ratio, mask=sc_pixel_mask, matched_resolution=False, tpl_sres=sc_tpl_sres, obj_sres=sres, degree=8, moments=2, plot=fit_plots) # The returned objects from the fit are the wavelength, model, and # mask vectors and the record array with the best-fitting model # parameters. The datamodel of the best-fitting model parameters is # set by: # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.spectralfitting.html#mangadap.proc.spectralfitting.StellarKinematicsFit._per_stellar_kinematics_dtype # Remask the continuum fit sc_continuum = StellarContinuumModel.reset_continuum_mask_window( numpy.ma.MaskedArray(cont_flux, mask=cont_mask>0)) # Show the fit and residual if usr_plots: pyplot.plot(wave, flux[0,:], label='Data') pyplot.plot(wave, sc_continuum[0,:], label='Model') pyplot.plot(wave, flux[0,:] - sc_continuum[0,:], label='Resid') pyplot.legend() pyplot.xlabel('Wavelength') pyplot.ylabel('Flux') pyplot.show() #------------------------------------------------------------------- #------------------------------------------------------------------- # Get the emission-line moments using the fitted stellar continuum # Read the database that define the emission lines and passbands momdb = EmissionMomentsDB.from_key(elmom_key) # Measure the moments elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=sc_continuum, redshift=z) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the emission-line model # Set the emission-line continuum templates if different from those # used for the stellar continuum if sc_tpl_key == el_tpl_key: # If the keywords are the same, just copy over the previous # library ... el_tpl = sc_tpl el_tpl_sres = sc_tpl_sres # ... and the best fitting stellar kinematics stellar_kinematics = cont_par['KIN'] else: # If the template sets are different, we need to match the # spectral resolution to the galaxy data ... _sres = SpectralResolution(wave, sres[0,:], log10=True) el_tpl = TemplateLibrary(el_tpl_key, sres=_sres, velscale_ratio=el_velscale_ratio, spectral_step=spectral_step, log=True, hardcopy=False) el_tpl_sres = numpy.mean(el_tpl['SPECRES'].data, axis=0).ravel() # ... and use the corrected velocity dispersions. stellar_kinematics = cont_par['KIN'] stellar_kinematics[:,1] = numpy.ma.sqrt(numpy.square(cont_par['KIN'][:,1]) - numpy.square(cont_par['SIGMACORR_EMP'])) # Read the emission line fitting database emldb = EmissionLineDB.from_key(elfit_key) # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # Perform the fit efit_t = time.perf_counter() eml_wave, model_flux, eml_flux, eml_mask, eml_fit_par, eml_eml_par \ = emlfit.fit(emldb, wave, flux, obj_ferr=ferr, obj_mask=el_pixel_mask, obj_sres=sres, guess_redshift=z, guess_dispersion=dispersion, reject_boxcar=101, stpl_wave=el_tpl['WAVE'].data, stpl_flux=el_tpl['FLUX'].data, stpl_sres=el_tpl_sres, stellar_kinematics=stellar_kinematics, etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=el_velscale_ratio, matched_resolution=False, mdegree=8, plot=fit_plots) print('TIME: ', time.perf_counter() - efit_t) # Line-fit metrics eml_eml_par = EmissionLineFit.line_metrics(emldb, wave, flux, ferr, model_flux, eml_eml_par, model_mask=eml_mask, bitmask=emlfit.bitmask) # Get the stellar continuum that was fit for the emission lines elcmask = eml_mask.ravel() > 0 goodpix = numpy.arange(elcmask.size)[numpy.invert(elcmask)] start, end = goodpix[0], goodpix[-1]+1 elcmask[start:end] = False el_continuum = numpy.ma.MaskedArray(model_flux - eml_flux, mask=elcmask.reshape(model_flux.shape)) # Plot the result if usr_plots: pyplot.plot(wave, flux[0,:], label='Data') pyplot.plot(wave, model_flux[0,:], label='Model') pyplot.plot(wave, el_continuum[0,:], label='EL Cont.') pyplot.plot(wave, sc_continuum[0,:], label='SC Cont.') pyplot.legend() pyplot.xlabel('Wavelength') pyplot.ylabel('Flux') pyplot.show() # Remeasure the emission-line moments with the new continuum new_elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=el_continuum, redshift=z) # Compare the summed flux and Gaussian-fitted flux for all the # fitted lines if usr_plots: pyplot.scatter(emldb['restwave'], (new_elmom['FLUX']-eml_eml_par['FLUX']).ravel(), c=eml_eml_par['FLUX'].ravel(), cmap='viridis', marker='.', s=60, lw=0, zorder=4) pyplot.grid() pyplot.xlabel('Wavelength') pyplot.ylabel('Summed-Gaussian Difference') pyplot.show() #------------------------------------------------------------------- #------------------------------------------------------------------- # Measure the spectral indices if absindx_key is None or bhdindx_key is None: # Neither are defined, so we're done print('Elapsed time: {0} seconds'.format(time.perf_counter() - t)) return # Setup the databases that define the indices to measure absdb = None if absindx_key is None else AbsorptionIndexDB.from_key(absindx_key) bhddb = None if bhdindx_key is None else BandheadIndexDB.from_key(bhdindx_key) # Remove the modeled emission lines from the spectra flux_noeml = flux - eml_flux redshift = stellar_kinematics[:,0] / astropy.constants.c.to('km/s').value sp_indices = SpectralIndices.measure_indices(absdb, bhddb, wave, flux_noeml, ivar=ivar, redshift=redshift) # Calculate the velocity dispersion corrections # - Construct versions of the best-fitting model spectra with and without # the included dispersion continuum = Sasuke.construct_continuum_models(emldb, el_tpl['WAVE'].data, el_tpl['FLUX'].data, wave, flux.shape, eml_fit_par) continuum_dcnvlv = Sasuke.construct_continuum_models(emldb, el_tpl['WAVE'].data, el_tpl['FLUX'].data, wave, flux.shape, eml_fit_par, redshift_only=True) # - Get the dispersion corrections and fill the relevant columns of the # index table sp_indices['BCONT_MOD'], sp_indices['BCONT_CORR'], sp_indices['RCONT_MOD'], \ sp_indices['RCONT_CORR'], sp_indices['MCONT_MOD'], sp_indices['MCONT_CORR'], \ sp_indices['AWGT_MOD'], sp_indices['AWGT_CORR'], \ sp_indices['INDX_MOD'], sp_indices['INDX_CORR'], \ sp_indices['INDX_BF_MOD'], sp_indices['INDX_BF_CORR'], \ good_les, good_ang, good_mag, is_abs \ = SpectralIndices.calculate_dispersion_corrections(absdb, bhddb, wave, flux, continuum, continuum_dcnvlv, redshift=redshift, redshift_dcnvlv=redshift) # Apply the index corrections. This is only done here for the # Worthey/Trager definition of the indices, as an example corrected_indices = numpy.zeros(sp_indices['INDX'].shape, dtype=float) corrected_indices_err = numpy.zeros(sp_indices['INDX'].shape, dtype=float) # Unitless indices corrected_indices[good_les], corrected_indices_err[good_les] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_les], sp_indices['INDX_CORR'][good_les], err=sp_indices['INDX_ERR'][good_les]) # Indices in angstroms corrected_indices[good_ang], corrected_indices_err[good_ang] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_ang], sp_indices['INDX_CORR'][good_ang], err=sp_indices['INDX_ERR'][good_ang], unit='ang') # Indices in magnitudes corrected_indices[good_mag], corrected_indices_err[good_mag] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_mag], sp_indices['INDX_CORR'][good_mag], err=sp_indices['INDX_ERR'][good_mag], unit='mag') # Print the results for a few indices index_names = numpy.append(absdb['name'], bhddb['name']) print('-'*73) print(f'{"NAME":<8} {"Raw Index":>12} {"err":>12} {"Index Corr":>12} {"Index":>12} {"err":>12}') print(f'{"-"*8:<8} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12}') for name in ['Hb', 'HDeltaA', 'Mgb', 'Dn4000']: i = numpy.where(index_names == name)[0][0] print(f'{name:<8} {sp_indices["INDX"][0,i]:12.4f} {sp_indices["INDX_ERR"][0,i]:12.4f} ' f'{sp_indices["INDX_CORR"][0,i]:12.4f} {corrected_indices[0,i]:12.4f} ' f'{corrected_indices_err[0,i]:12.4f}') print('-'*73) embed() print('Elapsed time: {0} seconds'.format(time.perf_counter() - t))