def test_sasuke(): # Read the data specfile = data_test_file('MaNGA_test_spectra.fits.gz') hdu = fits.open(specfile) drpbm = DRPFitsBitMask() flux = numpy.ma.MaskedArray(hdu['FLUX'].data, mask=drpbm.flagged( hdu['MASK'].data, MaNGADataCube.do_not_fit_flags())) ferr = numpy.ma.power(hdu['IVAR'].data, -0.5) flux[ferr.mask] = numpy.ma.masked ferr[flux.mask] = numpy.ma.masked nspec = flux.shape[0] # Instantiate the template libary velscale_ratio = 4 tpl = TemplateLibrary('MILESHC', match_resolution=False, velscale_ratio=velscale_ratio, spectral_step=1e-4, log=True, hardcopy=False) tpl_sres = numpy.mean(tpl['SPECRES'].data, axis=0) # Get the pixel mask pixelmask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPSCMSK')) # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # Perform the fit sc_wave, sc_flux, sc_mask, sc_par \ = ppxf.fit(tpl['WAVE'].data.copy(), tpl['FLUX'].data.copy(), hdu['WAVE'].data, flux, ferr, hdu['Z'].data, numpy.full(nspec, 100.), iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=velscale_ratio, mask=pixelmask, matched_resolution=False, tpl_sres=tpl_sres, obj_sres=hdu['SRES'].data, degree=8, moments=2) # Mask the 5577 sky line pixelmask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Read the emission line fitting database emldb = EmissionLineDB.from_key('ELPMILES') assert emldb['name'][ 18] == 'Ha', 'Emission-line database names or ordering changed' # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # Perform the fit el_wave, model, el_flux, el_mask, el_fit, el_par \ = emlfit.fit(emldb, hdu['WAVE'].data, flux, obj_ferr=ferr, obj_mask=pixelmask, obj_sres=hdu['SRES'].data, guess_redshift=hdu['Z'].data, guess_dispersion=numpy.full(nspec, 100.), reject_boxcar=101, stpl_wave=tpl['WAVE'].data, stpl_flux=tpl['FLUX'].data, stpl_sres=tpl_sres, stellar_kinematics=sc_par['KIN'], etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=velscale_ratio, matched_resolution=False) # Rejected pixels assert numpy.sum(emlfit.bitmask.flagged(el_mask, flag='PPXF_REJECT')) == 266, \ 'Different number of rejected pixels' # Unable to fit assert numpy.array_equal(emlfit.bitmask.flagged_bits(el_fit['MASK'][5]), ['NO_FIT']), \ 'Expected NO_FIT in 6th spectrum' # No *attempted* fits should fail assert numpy.sum(emlfit.bitmask.flagged(el_fit['MASK'], flag='FIT_FAILED')) == 0, \ 'Fits should not fail' # Number of used templates assert numpy.array_equal(numpy.sum(numpy.absolute(el_fit['TPLWGT']) > 1e-10, axis=1), [25, 22, 34, 32, 27, 0, 16, 22]), \ 'Different number of templates with non-zero weights' # No additive coefficients assert numpy.all(el_fit['ADDCOEF'] == 0), \ 'No additive coefficients should exist' # No multiplicative coefficients assert numpy.all(el_fit['MULTCOEF'] == 0), \ 'No multiplicative coefficients should exist' # Fit statistics assert numpy.all( numpy.absolute( el_fit['RCHI2'] - numpy.array([2.34, 1.22, 1.58, 1.88, 3.20, 0., 1.05, 0.88])) < 0.02 ), 'Reduced chi-square are too different' assert numpy.all( numpy.absolute(el_fit['RMS'] - numpy.array( [0.036, 0.019, 0.036, 0.024, 0.051, 0.000, 0.012, 0.012])) < 0.001 ), 'RMS too different' assert numpy.all(numpy.absolute(el_fit['FRMS'] - numpy.array([0.021, 0.025, 0.025, 0.033, 0.018, 0.000, 1.052, 0.101])) < 0.001), \ 'Fractional RMS too different' assert numpy.all(numpy.absolute(el_fit['RMSGRW'][:,2] - numpy.array([0.070, 0.038, 0.071, 0.047, 0.101, 0.000, 0.026, 0.024])) < 0.001), \ 'Median absolute residual too different' # All lines should have the same velocity assert numpy.all(numpy.all(el_par['KIN'][:,:,0] == el_par['KIN'][:,None,0,0], axis=1)), \ 'All velocities should be the same' # Test velocity values # TODO: Need some better examples! assert numpy.all(numpy.absolute(el_par['KIN'][:,0,0] - numpy.array([14704.9, 14869.3, 14767.1, 8161.9, 9258.7, 0.0, 5130.9, 5430.3])) < 0.1), \ 'Velocities are too different' # H-alpha dispersions assert numpy.all(numpy.absolute(el_par['KIN'][:,18,1] - numpy.array([1000.5, 1000.5, 224.7, 124.9, 171.2, 0.0, 81.2, 50.0])) < 1e-1), \ 'H-alpha dispersions are too different'
el_tpl = TemplateLibrary(el_tpl_key, sres=_sres, velscale_ratio=velscale_ratio, spectral_step=1e-4, log=True, hardcopy=False) el_tpl_sres = numpy.mean(el_tpl['SPECRES'].data, axis=0).ravel() # ... and use the corrected velocity dispersions. stellar_kinematics = cont_par['KIN'] stellar_kinematics[:,1] = numpy.ma.sqrt(numpy.square(cont_par['KIN'][:,1]) - numpy.square(cont_par['SIGMACORR_EMP'])) # Mask the 5577 sky line el_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Read the emission line fitting database emldb = EmissionLineDB.from_key(elfit_key) # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # Perform the emission-line fit on each spectrum using the stellar # kinematics from the stacked spectrum eml_wave, model_flux, eml_flux, eml_mask, eml_fit_par, eml_eml_par \ = emlfit.fit(emldb, wave_binned, flux_binned, obj_ferr=ferr_binned, obj_mask=el_pixel_mask, obj_sres=sres_binned, guess_redshift=z_binned, guess_dispersion=dispersion_binned, reject_boxcar=101, stpl_wave=el_tpl['WAVE'].data, stpl_flux=el_tpl['FLUX'].data, stpl_sres=el_tpl_sres, stellar_kinematics=stellar_kinematics, etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=velscale_ratio, matched_resolution=False, mdegree=8, plot=fit_plots, remapid=binid, remap_flux=flux, remap_ferr=ferr, remap_mask=el_pixel_mask, remap_sres=sres, remap_skyx=x, remap_skyy=y, obj_skyx=x_binned, obj_skyy=y_binned)
def main(): t = time.perf_counter() arg = parse_args() if not os.path.isfile(arg.inp): raise FileNotFoundError('No file: {0}'.format(arg.inp)) directory_path = os.getcwd( ) if arg.output_root is None else os.path.abspath(arg.output_root) if not os.path.isdir(directory_path): os.makedirs(directory_path) data_file = os.path.abspath(arg.inp) fit_file = os.path.join(directory_path, arg.out) flag_db = None if arg.spec_flags is None else os.path.abspath( arg.spec_flags) # Read the data spectral_step = 1e-4 wave, flux, ferr, sres, redshift, fit_spectrum = object_data( data_file, flag_db) nspec, npix = flux.shape dispersion = numpy.full(nspec, 100., dtype=numpy.float) # fit_spectrum[:] = False # fit_spectrum[0] = True # fit_spectrum[171] = True # fit_spectrum[791] = True # Mask spectra that should not be fit indx = numpy.any(numpy.logical_not(numpy.ma.getmaskarray(flux)), axis=1) & fit_spectrum flux[numpy.logical_not(indx), :] = numpy.ma.masked print('Read: {0}'.format(arg.inp)) print('Contains {0} spectra'.format(nspec)) print(' each with {0} pixels'.format(npix)) print('Fitting {0} spectra.'.format(numpy.sum(fit_spectrum))) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the stellar continuum # Construct the template library sc_tpl = TemplateLibrary(arg.sc_tpl, match_resolution=False, velscale_ratio=arg.sc_vsr, spectral_step=spectral_step, log=True, hardcopy=False) # Set the spectral resolution sc_tpl_sres = numpy.mean(sc_tpl['SPECRES'].data, axis=0).ravel() # Set the pixel mask sc_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPMPL8')) # Instantiate the fitting class ppxf = PPXFFit(StellarContinuumModelBitMask()) # The following call performs the fit to the spectrum. Specifically # note that the code only fits the first two moments, uses an # 8th-order additive polynomial, and uses the 'no_global_wrej' # iteration mode. See # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.ppxffit.html#mangadap.proc.ppxffit.PPXFFit.fit cont_wave, cont_flux, cont_mask, cont_par \ = ppxf.fit(sc_tpl['WAVE'].data.copy(), sc_tpl['FLUX'].data.copy(), wave, flux, ferr, redshift, dispersion, iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=arg.sc_vsr, mask=sc_pixel_mask, matched_resolution=False, tpl_sres=sc_tpl_sres, obj_sres=sres, degree=arg.sc_deg, moments=2) #, plot=True) if arg.sc_only: write(fit_file, wave, cont_flux, cont_mask, cont_par) print('Elapsed time: {0} seconds'.format(time.perf_counter() - t)) return # if numpy.any(cont_par['KIN'][:,1] < 0): # embed() # exit() #------------------------------------------------------------------- #------------------------------------------------------------------- #------------------------------------------------------------------- # Measure the emission-line moments # # Remask the continuum fit # sc_continuum = StellarContinuumModel.reset_continuum_mask_window( # numpy.ma.MaskedArray(cont_flux, mask=cont_mask>0)) # # Read the database that define the emission lines and passbands # momdb = EmissionMomentsDB.from_key(arg.el_band) # # Measure the moments # elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=sc_continuum, # redshift=redshift) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the emission-line model # Set the emission-line continuum templates if different from those # used for the stellar continuum if arg.sc_tpl == arg.el_tpl: # If the keywords are the same, just copy over the previous # library and the best fitting stellar kinematics el_tpl = sc_tpl el_tpl_sres = sc_tpl_sres stellar_kinematics = cont_par['KIN'].copy() else: # If the template sets are different, we need to match the # spectral resolution to the galaxy data and use the corrected # velocity dispersions. _sres = SpectralResolution(wave, sres[0, :], log10=True) el_tpl = TemplateLibrary(arg.el_tpl, sres=_sres, velscale_ratio=arg.el_vsr, spectral_step=spectral_step, log=True, hardcopy=False) el_tpl_sres = numpy.mean(el_tpl['SPECRES'].data, axis=0).ravel() stellar_kinematics = cont_par['KIN'].copy() stellar_kinematics[:, 1] = numpy.ma.sqrt( numpy.square(cont_par['KIN'][:, 1]) - numpy.square(cont_par['SIGMACORR_SRES'])).filled(0.0) # if numpy.any(cont_par['KIN'][:,1] < 0): # embed() # exit() # # if numpy.any(stellar_kinematics[:,1] < 0): # embed() # exit() # Mask the 5577 sky line el_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Read the emission line fitting database emldb = EmissionLineDB.from_key(arg.el_list) # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # TODO: Improve the initial velocity guess using the first moment... # Perform the fit elfit_time = time.perf_counter() model_wave, model_flux, eml_flux, model_mask, eml_fit_par, eml_eml_par \ = emlfit.fit(emldb, wave, flux, obj_ferr=ferr, obj_mask=el_pixel_mask, obj_sres=sres, guess_redshift=redshift, guess_dispersion=dispersion, reject_boxcar=101, stpl_wave=el_tpl['WAVE'].data, stpl_flux=el_tpl['FLUX'].data, stpl_sres=el_tpl_sres, stellar_kinematics=stellar_kinematics, etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=arg.el_vsr, matched_resolution=False, mdegree=arg.el_deg, ensemble=False)#, plot=True) print('EML FIT TIME: ', time.perf_counter() - elfit_time) # Line-fit metrics (should this be done in the fit method?) eml_eml_par = EmissionLineFit.line_metrics(emldb, wave, flux, ferr, model_flux, eml_eml_par, model_mask=model_mask, bitmask=emlfit.bitmask) # Equivalent widths EmissionLineFit.measure_equivalent_width(wave, flux, emldb, eml_eml_par, bitmask=emlfit.bitmask, checkdb=False) # Measure the emission-line moments # - Model continuum continuum = StellarContinuumModel.reset_continuum_mask_window(model_flux - eml_flux) # - Updated redshifts fit_redshift = eml_eml_par['KIN'][:,numpy.where(emldb['name'] == 'Ha')[0][0],0] \ / astropy.constants.c.to('km/s').value # - Set the moment database momdb = EmissionMomentsDB.from_key(arg.el_band) # - Set the moment bitmask mombm = EmissionLineMomentsBitMask() # - Measure the moments elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, ivar=numpy.ma.power(ferr, -2), continuum=continuum, redshift=fit_redshift, bitmask=mombm) # - Select the bands that are valid include_band = numpy.array([numpy.logical_not(momdb.dummy)]*nspec) \ & numpy.logical_not(mombm.flagged(elmom['MASK'], flag=['BLUE_EMPTY', 'RED_EMPTY'])) # - Set the line center at the center of the primary passband line_center = (1.0 + fit_redshift)[:, None] * momdb['restwave'][None, :] elmom['BMED'], elmom['RMED'], pos, elmom['EWCONT'], elmom['EW'], elmom['EWERR'] \ = emission_line_equivalent_width(wave, flux, momdb['blueside'], momdb['redside'], line_center, elmom['FLUX'], redshift=fit_redshift, line_flux_err=elmom['FLUXERR'], include_band=include_band) # - Flag non-positive measurements indx = include_band & numpy.logical_not(pos) elmom['MASK'][indx] = mombm.turn_on(elmom['MASK'][indx], 'NON_POSITIVE_CONTINUUM') # - Set the binids elmom['BINID'] = numpy.arange(nspec) elmom['BINID_INDEX'] = numpy.arange(nspec) write(fit_file, wave, cont_flux, cont_mask, cont_par, model_flux=model_flux, model_mask=model_mask, eml_flux=eml_flux, eml_fit_par=eml_fit_par, eml_eml_par=eml_eml_par, elmom=elmom) print('Elapsed time: {0} seconds'.format(time.perf_counter() - t))
hardcopy=False) el_tpl_sres = numpy.mean(el_tpl['SPECRES'].data, axis=0).ravel() # ... and use the corrected velocity dispersions. stellar_kinematics = cont_par['KIN'] stellar_kinematics[:, 1] = numpy.ma.sqrt( numpy.square(cont_par['KIN'][:, 1]) - numpy.square(cont_par['SIGMACORR_EMP'])) # Mask the 5577 sky line el_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Read the emission line fitting database emldb = EmissionLineDB.from_key(elfit_key) # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # Perform the fit efit_t = time.perf_counter() eml_wave, model_flux, eml_flux, eml_mask, eml_fit_par, eml_eml_par \ = emlfit.fit(emldb, wave, flux, obj_ferr=ferr, obj_mask=el_pixel_mask, obj_sres=sres, guess_redshift=z, guess_dispersion=dispersion, reject_boxcar=101, stpl_wave=el_tpl['WAVE'].data, stpl_flux=el_tpl['FLUX'].data, stpl_sres=el_tpl_sres, stellar_kinematics=stellar_kinematics, etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=el_velscale_ratio, matched_resolution=False, mdegree=8, plot=fit_plots) print('TIME: ', time.perf_counter() - efit_t) # Line-fit metrics eml_eml_par = EmissionLineFit.line_metrics(emldb,
def main(): t = time.perf_counter() #------------------------------------------------------------------- # Read spectra to fit. The following reads a single MaNGA spectrum. # This is where you should read in your own spectrum to fit. # Plate-IFU to use plt = 7815 ifu = 3702 # Spaxel coordinates x = 25 #30 y = 25 #37 # Where to find the relevant datacube. This example accesses the test data # that can be downloaded by executing the script here: # https://github.com/sdss/mangadap/blob/master/download_test_data.py directory_path = defaults.dap_source_dir() / 'data' / 'remote' # Read a spectrum wave, flux, ivar, sres = get_spectra(plt, ifu, x, y, directory_path=directory_path) # In general, the DAP fitting functions expect data to be in 2D # arrays with shape (N-spectra,N-wave). So if you only have one # spectrum, you need to expand the dimensions: flux = flux.reshape(1,-1) ivar = ivar.reshape(1,-1) ferr = numpy.ma.power(ivar, -0.5) sres = sres.reshape(1,-1) # The majority (if not all) of the DAP methods expect that your # spectra are binned logarithmically in wavelength (primarily # because this is what pPXF expects). You can either have the DAP # function determine this value (commented line below) or set it # directly. The value is used to resample the template spectra to # match the sampling of the spectra to fit (up to some integer; see # velscale_ratio). # spectral_step = spectral_coordinate_step(wave, log=True) spectral_step = 1e-4 # Hereafter, the methods expect a wavelength vector, a flux array # with the spectra to fit, an ferr array with the 1-sigma errors in # the flux, and sres with the wavelength-dependent spectral # resolution, R = lambda / Dlambda #------------------------------------------------------------------- #------------------------------------------------------------------- # The DAP needs a reasonable guess of the redshift of the spectrum # (within +/- 2000 km/s). In this example, I'm pulling the redshift # from the DRPall file. There must be one redshift estimate per # spectrum to fit. Here that means it's a single element array # This example accesses the test data # that can be downloaded by executing the script here: # https://github.com/sdss/mangadap/blob/master/download_test_data.py drpall_file = directory_path / f'drpall-{drp_test_version}.fits' z = numpy.array([get_redshift(plt, ifu, drpall_file)]) print('Redshift: {0}'.format(z[0])) # The DAP also requires an initial guess for the velocity # dispersion. A guess of 100 km/s is usually robust, but this may # depend on your spectral resolution. dispersion = numpy.array([100.]) #------------------------------------------------------------------- #------------------------------------------------------------------- # The following sets the keyword for the template spectra to use # during the fit. You can specify different template sets to use # during the stellar-continuum (stellar kinematics) fit and the # emission-line modeling. # Templates used in the stellar continuum fits sc_tpl_key = 'MILESHC' # Templates used in the emission-line modeling el_tpl_key = 'MASTARSSP' # You also need to specify the sampling for the template spectra. # The templates must be sampled with the same pixel step as the # spectra to be fit, up to an integer factor. The critical thing # for the sampling is that you do not want to undersample the # spectral resolution element of the template spectra. Here, I set # the sampling for the MILES templates to be a factor of 4 smaller # than the MaNGA spectrum to be fit (which is a bit of overkill # given the resolution difference). I set the sampling of the # MaStar templates to be the same as the galaxy data. # Template pixel scale a factor of 4 smaller than galaxy data sc_velscale_ratio = 4 # Template sampling is the same as the galaxy data el_velscale_ratio = 1 # You then need to identify the database that defines the # emission-line passbands (elmom_key) for the non-parametric # emission-line moment calculations, and the emission-line # parameters (elfit_key) for the Gaussian emission-line modeling. # See # https://sdss-mangadap.readthedocs.io/en/latest/emissionlines.html. elmom_key = 'ELBMPL9' elfit_key = 'ELPMPL11' # If you want to also calculate the spectral indices, you can # provide a keyword that indicates the database with the passband # definitions for both the absorption-line and bandhead/color # indices to measure. The script allows these to be None, if you # don't want to calculate the spectral indices. See # https://sdss-mangadap.readthedocs.io/en/latest/spectralindices.html absindx_key = 'EXTINDX' bhdindx_key = 'BHBASIC' # Now we want to construct a pixel mask that excludes regions with # known artifacts and emission lines. The 'BADSKY' artifact # database only masks the 5577, which can have strong left-over # residuals after sky-subtraction. The list of emission lines (set # by the ELPMPL8 keyword) can be different from the list of # emission lines fit below. sc_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY'), emldb=EmissionLineDB.from_key('ELPMPL11')) # Mask the 5577 sky line el_pixel_mask = SpectralPixelMask(artdb=ArtifactDB.from_key('BADSKY')) # Finally, you can set whether or not to show a set of plots. # # Show the ppxf-generated plots for each fit stage. fit_plots = False # Show summary plots usr_plots = True #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the stellar continuum # First, we construct the template library. The keyword that # selects the template library (sc_tpl_key) is defined above. The # following call reads in the template library and processes the # data to have the appropriate pixel sampling. Note that *no* # matching of the spectral resolution to the galaxy spectrum is # performed. sc_tpl = TemplateLibrary(sc_tpl_key, match_resolution=False, velscale_ratio=sc_velscale_ratio, spectral_step=spectral_step, log=True, hardcopy=False) # This calculation of the mean spectral resolution is a kludge. The # template library should provide spectra that are *all* at the # same spectral resolution. Otherwise, one cannot freely combine # the spectra to fit the Doppler broadening of the galaxy spectrum # in a robust (constrained) way (without substantially more # effort). There should be no difference between what's done below # and simply taking the spectral resolution to be that of the first # template spectrum (i.e., sc_tpl['SPECRES'].data[0]) sc_tpl_sres = numpy.mean(sc_tpl['SPECRES'].data, axis=0).ravel() # Instantiate the fitting class, including the mask that it should # use to flag the data. [[This mask should just be default...]] ppxf = PPXFFit(StellarContinuumModelBitMask()) # The following call performs the fit to the spectrum. Specifically # note that the code only fits the first two moments, uses an # 8th-order additive polynomial, and uses the 'no_global_wrej' # iteration mode. See # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.ppxffit.html#mangadap.proc.ppxffit.PPXFFit.fit cont_wave, cont_flux, cont_mask, cont_par \ = ppxf.fit(sc_tpl['WAVE'].data.copy(), sc_tpl['FLUX'].data.copy(), wave, flux, ferr, z, dispersion, iteration_mode='no_global_wrej', reject_boxcar=100, ensemble=False, velscale_ratio=sc_velscale_ratio, mask=sc_pixel_mask, matched_resolution=False, tpl_sres=sc_tpl_sres, obj_sres=sres, degree=8, moments=2, plot=fit_plots) # The returned objects from the fit are the wavelength, model, and # mask vectors and the record array with the best-fitting model # parameters. The datamodel of the best-fitting model parameters is # set by: # https://sdss-mangadap.readthedocs.io/en/latest/api/mangadap.proc.spectralfitting.html#mangadap.proc.spectralfitting.StellarKinematicsFit._per_stellar_kinematics_dtype # Remask the continuum fit sc_continuum = StellarContinuumModel.reset_continuum_mask_window( numpy.ma.MaskedArray(cont_flux, mask=cont_mask>0)) # Show the fit and residual if usr_plots: pyplot.plot(wave, flux[0,:], label='Data') pyplot.plot(wave, sc_continuum[0,:], label='Model') pyplot.plot(wave, flux[0,:] - sc_continuum[0,:], label='Resid') pyplot.legend() pyplot.xlabel('Wavelength') pyplot.ylabel('Flux') pyplot.show() #------------------------------------------------------------------- #------------------------------------------------------------------- # Get the emission-line moments using the fitted stellar continuum # Read the database that define the emission lines and passbands momdb = EmissionMomentsDB.from_key(elmom_key) # Measure the moments elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=sc_continuum, redshift=z) #------------------------------------------------------------------- #------------------------------------------------------------------- # Fit the emission-line model # Set the emission-line continuum templates if different from those # used for the stellar continuum if sc_tpl_key == el_tpl_key: # If the keywords are the same, just copy over the previous # library ... el_tpl = sc_tpl el_tpl_sres = sc_tpl_sres # ... and the best fitting stellar kinematics stellar_kinematics = cont_par['KIN'] else: # If the template sets are different, we need to match the # spectral resolution to the galaxy data ... _sres = SpectralResolution(wave, sres[0,:], log10=True) el_tpl = TemplateLibrary(el_tpl_key, sres=_sres, velscale_ratio=el_velscale_ratio, spectral_step=spectral_step, log=True, hardcopy=False) el_tpl_sres = numpy.mean(el_tpl['SPECRES'].data, axis=0).ravel() # ... and use the corrected velocity dispersions. stellar_kinematics = cont_par['KIN'] stellar_kinematics[:,1] = numpy.ma.sqrt(numpy.square(cont_par['KIN'][:,1]) - numpy.square(cont_par['SIGMACORR_EMP'])) # Read the emission line fitting database emldb = EmissionLineDB.from_key(elfit_key) # Instantiate the fitting class emlfit = Sasuke(EmissionLineModelBitMask()) # Perform the fit efit_t = time.perf_counter() eml_wave, model_flux, eml_flux, eml_mask, eml_fit_par, eml_eml_par \ = emlfit.fit(emldb, wave, flux, obj_ferr=ferr, obj_mask=el_pixel_mask, obj_sres=sres, guess_redshift=z, guess_dispersion=dispersion, reject_boxcar=101, stpl_wave=el_tpl['WAVE'].data, stpl_flux=el_tpl['FLUX'].data, stpl_sres=el_tpl_sres, stellar_kinematics=stellar_kinematics, etpl_sinst_mode='offset', etpl_sinst_min=10., velscale_ratio=el_velscale_ratio, matched_resolution=False, mdegree=8, plot=fit_plots) print('TIME: ', time.perf_counter() - efit_t) # Line-fit metrics eml_eml_par = EmissionLineFit.line_metrics(emldb, wave, flux, ferr, model_flux, eml_eml_par, model_mask=eml_mask, bitmask=emlfit.bitmask) # Get the stellar continuum that was fit for the emission lines elcmask = eml_mask.ravel() > 0 goodpix = numpy.arange(elcmask.size)[numpy.invert(elcmask)] start, end = goodpix[0], goodpix[-1]+1 elcmask[start:end] = False el_continuum = numpy.ma.MaskedArray(model_flux - eml_flux, mask=elcmask.reshape(model_flux.shape)) # Plot the result if usr_plots: pyplot.plot(wave, flux[0,:], label='Data') pyplot.plot(wave, model_flux[0,:], label='Model') pyplot.plot(wave, el_continuum[0,:], label='EL Cont.') pyplot.plot(wave, sc_continuum[0,:], label='SC Cont.') pyplot.legend() pyplot.xlabel('Wavelength') pyplot.ylabel('Flux') pyplot.show() # Remeasure the emission-line moments with the new continuum new_elmom = EmissionLineMoments.measure_moments(momdb, wave, flux, continuum=el_continuum, redshift=z) # Compare the summed flux and Gaussian-fitted flux for all the # fitted lines if usr_plots: pyplot.scatter(emldb['restwave'], (new_elmom['FLUX']-eml_eml_par['FLUX']).ravel(), c=eml_eml_par['FLUX'].ravel(), cmap='viridis', marker='.', s=60, lw=0, zorder=4) pyplot.grid() pyplot.xlabel('Wavelength') pyplot.ylabel('Summed-Gaussian Difference') pyplot.show() #------------------------------------------------------------------- #------------------------------------------------------------------- # Measure the spectral indices if absindx_key is None or bhdindx_key is None: # Neither are defined, so we're done print('Elapsed time: {0} seconds'.format(time.perf_counter() - t)) return # Setup the databases that define the indices to measure absdb = None if absindx_key is None else AbsorptionIndexDB.from_key(absindx_key) bhddb = None if bhdindx_key is None else BandheadIndexDB.from_key(bhdindx_key) # Remove the modeled emission lines from the spectra flux_noeml = flux - eml_flux redshift = stellar_kinematics[:,0] / astropy.constants.c.to('km/s').value sp_indices = SpectralIndices.measure_indices(absdb, bhddb, wave, flux_noeml, ivar=ivar, redshift=redshift) # Calculate the velocity dispersion corrections # - Construct versions of the best-fitting model spectra with and without # the included dispersion continuum = Sasuke.construct_continuum_models(emldb, el_tpl['WAVE'].data, el_tpl['FLUX'].data, wave, flux.shape, eml_fit_par) continuum_dcnvlv = Sasuke.construct_continuum_models(emldb, el_tpl['WAVE'].data, el_tpl['FLUX'].data, wave, flux.shape, eml_fit_par, redshift_only=True) # - Get the dispersion corrections and fill the relevant columns of the # index table sp_indices['BCONT_MOD'], sp_indices['BCONT_CORR'], sp_indices['RCONT_MOD'], \ sp_indices['RCONT_CORR'], sp_indices['MCONT_MOD'], sp_indices['MCONT_CORR'], \ sp_indices['AWGT_MOD'], sp_indices['AWGT_CORR'], \ sp_indices['INDX_MOD'], sp_indices['INDX_CORR'], \ sp_indices['INDX_BF_MOD'], sp_indices['INDX_BF_CORR'], \ good_les, good_ang, good_mag, is_abs \ = SpectralIndices.calculate_dispersion_corrections(absdb, bhddb, wave, flux, continuum, continuum_dcnvlv, redshift=redshift, redshift_dcnvlv=redshift) # Apply the index corrections. This is only done here for the # Worthey/Trager definition of the indices, as an example corrected_indices = numpy.zeros(sp_indices['INDX'].shape, dtype=float) corrected_indices_err = numpy.zeros(sp_indices['INDX'].shape, dtype=float) # Unitless indices corrected_indices[good_les], corrected_indices_err[good_les] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_les], sp_indices['INDX_CORR'][good_les], err=sp_indices['INDX_ERR'][good_les]) # Indices in angstroms corrected_indices[good_ang], corrected_indices_err[good_ang] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_ang], sp_indices['INDX_CORR'][good_ang], err=sp_indices['INDX_ERR'][good_ang], unit='ang') # Indices in magnitudes corrected_indices[good_mag], corrected_indices_err[good_mag] \ = SpectralIndices.apply_dispersion_corrections(sp_indices['INDX'][good_mag], sp_indices['INDX_CORR'][good_mag], err=sp_indices['INDX_ERR'][good_mag], unit='mag') # Print the results for a few indices index_names = numpy.append(absdb['name'], bhddb['name']) print('-'*73) print(f'{"NAME":<8} {"Raw Index":>12} {"err":>12} {"Index Corr":>12} {"Index":>12} {"err":>12}') print(f'{"-"*8:<8} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12} {"-"*12:<12}') for name in ['Hb', 'HDeltaA', 'Mgb', 'Dn4000']: i = numpy.where(index_names == name)[0][0] print(f'{name:<8} {sp_indices["INDX"][0,i]:12.4f} {sp_indices["INDX_ERR"][0,i]:12.4f} ' f'{sp_indices["INDX_CORR"][0,i]:12.4f} {corrected_indices[0,i]:12.4f} ' f'{corrected_indices_err[0,i]:12.4f}') print('-'*73) embed() print('Elapsed time: {0} seconds'.format(time.perf_counter() - t))