示例#1
0
def vector_traj(oracle, vector, manip_name=None):
    with oracle.robot:
        if manip_name is not None:
            oracle.robot.SetActiveManipulator(manip_name)
        oracle.robot.SetActiveDOFs(get_arm_indices(oracle))
        with collision_saver(oracle.env, openravepy_int.CollisionOptions.ActiveDOFs):
            end_config = inverse_kinematics(oracle, vector_trans(get_manip_trans(oracle), vector))
            if end_config is None:
                return None
            return linear_arm_traj(oracle, end_config, manip_name=manip_name)
def preprocess_edge(oracle, edge):
  if not hasattr(edge, 'preprocessed'):
    edge.preprocessed = True
    with oracle.robot_saver():
      CSpace.robot_arm_and_base(oracle.robot.GetActiveManipulator()).set_active()
      for q in edge.configs():
        if not hasattr(q, 'saver'):
          oracle.robot.SetActiveDOFValues(q.value)
          q.saver = oracle.robot_saver()
          q.manip_trans = get_manip_trans(oracle)
          q.aabbs = [(aabb_min(aabb), aabb_max(aabb)) for aabb in [oracle.compute_part_aabb(part) for part in USE_ROBOT_PARTS]]
示例#3
0
def collision_free_grasp(oracle, geom_hash, grasp_tform, approach_vector, manip_name=None):
  body_name = oracle.get_body_name(geom_hash)
  with oracle.state_saver():
    if manip_name is not None: oracle.robot.SetActiveManipulator(manip_name)
    oracle.set_active_state(active_obstacles=False, active_objects=set([body_name]))
    open_gripper(oracle)
    oracle.robot.SetDOFValues(oracle.default_left_arm_config, oracle.robot.GetActiveManipulator().GetArmIndices())
    set_trans(oracle.bodies[body_name], object_trans_from_manip_trans(get_manip_trans(oracle), grasp_tform))
    if not robot_collision(oracle, body_name):
      gripper_config, gripper_traj = oracle.task_manip.CloseFingers(offset=None, movingdir=None, execute=False, outputtraj=False, outputfinal=True,
          coarsestep=None, translationstepmult=None, finestep=None, outputtrajobj=True)
      return Grasp(grasp_tform, gripper_config, TrajTrajectory(CSpace(oracle.robot,
          indices=oracle.robot.GetActiveManipulator().GetGripperIndices()), gripper_traj), approach_vector)
  return None
示例#4
0
def collision_free_grasp(oracle, geom_hash, grasp_tform, approach_vector, manip_name=None):
  body_name = oracle.get_body_name(geom_hash)
  with oracle.state_saver():
    if manip_name is not None: oracle.robot.SetActiveManipulator(manip_name)
    oracle.set_active_state(active_obstacles=False, active_objects=set([body_name]))
    open_gripper(oracle)
    oracle.robot.SetDOFValues(oracle.default_left_arm_config, oracle.robot.GetActiveManipulator().GetArmIndices())
    set_trans(oracle.bodies[body_name], object_trans_from_manip_trans(get_manip_trans(oracle), grasp_tform))
    if not robot_collision(oracle, body_name):
      gripper_config, gripper_traj = oracle.task_manip.CloseFingers(offset=None, movingdir=None, execute=False, outputtraj=False, outputfinal=True,
          coarsestep=None, translationstepmult=None, finestep=None, outputtrajobj=True)
      return Grasp(grasp_tform, gripper_config, TrajTrajectory(CSpace(oracle.robot,
          indices=oracle.robot.GetActiveManipulator().GetGripperIndices()), gripper_traj), approach_vector)
  return None
def preprocess_edge(oracle, edge):
    if not hasattr(edge, 'preprocessed'):
        edge.preprocessed = True
        with oracle.robot_saver():
            CSpace.robot_arm_and_base(
                oracle.robot.GetActiveManipulator()).set_active()
            for q in edge.configs():
                if not hasattr(q, 'saver'):
                    oracle.robot.SetActiveDOFValues(q.value)
                    q.saver = oracle.robot_saver()
                    q.manip_trans = get_manip_trans(oracle)
                    q.aabbs = [(aabb_min(aabb), aabb_max(aabb)) for aabb in [
                        oracle.compute_part_aabb(part)
                        for part in USE_ROBOT_PARTS
                    ]]
    def policy(self, belief, goal):

        # The positions of objects don't change as the robot moves (i.e they are in a global frame)
        # The variances grow though as the robot moves
        # The robot config has no uncertainty
        # Thus, things are sort of relative to the robot

        # Sample poses that are reachable given the uncertainty and can see the table
        # Can ignore transition uncertainty for action effects
        # Only need to keep track of uncertainty along hte first move action as a precondition
        # Can either sample robot trajectory rollouts or object poses as the robot moves with increased uncertainty

        # Just do large objects for base collisions

        from manipulation.primitives.transforms import vector_trans
        from manipulation.bodies.robot import approach_vector_from_object_trans

        DISPLAY_GRASPS_HPN = False
        if DISPLAY_GRASPS_HPN:
            obj = 'objA'
            conf = belief.pbs.getConf(
            )  # belief.conf # Default conf (i.e. base is wrong)
            grasp_desc = belief.objects[obj].attrs['graspDesc']
            shape = belief.objects[obj].attrs['shape']
            print shape.parts()[0].vertices()
            import util.windowManager3D as wm
            win = 'W'
            for i in range(len(grasp_desc)):
                wm.getWindow(win).clear()
                obj_trans = get_object_frame(conf, self.hand, grasp_desc[i])
                #approach_trans = get_approach_frame(conf, self.hand)
                #print np.round(approach_trans.matrix, 2)

                approach_vector = or_from_hpn_approach_vector(
                    conf.robot, self.hand, grasp_desc[i])
                transformed_vector = approach_vector_from_object_trans(
                    obj_trans.matrix, approach_vector)
                obj_trans = hu.Transform(
                    vector_trans(obj_trans.matrix, transformed_vector))

                #temp_matrix = obj_trans.matrix.copy() # NOTE - this works as well?
                #temp_matrix[:3, 3] = approach_trans.matrix[:3, 3]
                #obj_trans = hu.Transform(temp_matrix)

                #print shape.origin() # Origin
                #print np.round(obj_trans.matrix, 2)
                shape.applyTrans(obj_trans).draw(win, color='blue')
                conf.draw(win, color='red')
                raw_input('Continue?')
            return None

        assert not check_belief_collisions(belief, .9)

        if satisfies(belief, goal):
            return []
        if self.plan is None:
            env = get_env()
            manip_problem = or_manipulation_problem(env, belief, goal)
            #manip_problem.set_viewer(env)

            self.oracle = ManipulationOracle(
                manip_problem, env, active_arms=[self.hand], reset_robot=False
            )  # TODO - need to avoid resetting the original configuration
            # TODO - try just replacing the current problem

            DISPLAY_GRASPS_OR = False
            if DISPLAY_GRASPS_OR:  # NOTE - OR Grasps are from Manip to Pose (not Gripper)
                from manipulation.bodies.robot import get_manip_trans, approach_vector_from_object_trans
                from manipulation.primitives.transforms import object_trans_from_manip_trans, set_trans, point_from_trans
                from manipulation.grasps.grasps import get_grasps
                from manipulation.primitives.display import draw_arrow

                obj = 'objA'
                #set_trans(self.oracle.bodies[obj], np.eye(4))
                #print self.oracle.bodies[obj].ComputeAABB()

                #for grasp in get_grasps(self.oracle, obj): # NOTE - this randomizes the grasps
                for grasp in get_or_grasps(self.oracle, obj):
                    manip_trans = get_manip_trans(self.oracle)
                    #grasp_trans = or_from_hpn_grasp(belief.conf.robot, self.hand, grasp_desc[i]).matrix
                    obj_trans = object_trans_from_manip_trans(
                        manip_trans, grasp.grasp_trans)
                    set_trans(self.oracle.bodies[obj], obj_trans)

                    approach_vector = approach_vector_from_object_trans(
                        obj_trans, grasp.approach_vector)
                    approach_trans = vector_trans(obj_trans, approach_vector)
                    _ = draw_arrow(env, point_from_trans(approach_trans),
                                   point_from_trans(obj_trans))

                    print
                    print grasp.approach_vector
                    print grasp.grasp_index
                    print np.round(obj_trans, 2)
                    raw_input('Continue?')
                return None

            # TODO - check that the plan is still good by converting the state

            stream_problem = compile_problem(self.oracle)

            self.oracle.draw_goals(
            )  # NOTE - this must be after compile_problem to ensure the goal_poses convert
            if is_viewer_active(self.oracle.env):
                raw_input('Start?')

            search_fn = get_fast_downward(
                'eager', verbose=False
            )  # dijkstra | astar | wastar1 | wastar2 | wastar3 | eager | lazy
            plan, universe = focused_planner(stream_problem,
                                             search=search_fn,
                                             greedy=False,
                                             stream_cost=10,
                                             verbose=False,
                                             debug=False)
            #plan, universe = incremental_planner(stream_problem, search=search_fn, verbose=True, debug=False)
            if plan is None:
                plan = []

            #visualize_plan(Plan(convert_state(self.oracle, stream_problem.initial_atoms),
            #                    executable_plan(self.oracle, plan)), self.oracle, display=True, save=None)
            #for state in get_states(universe, plan):
            #  or_state = convert_state(self.oracle, state)
            #  set_state(or_state, self.oracle)
            #  raw_input('Continue?')

            look_iterations = 3
            self.plan = []
            state_sequence = get_states(universe, plan)
            for i, (action, args) in enumerate(convert_plan(plan)):
                or_state = convert_state(self.oracle, state_sequence[i])
                set_state(or_state, self.oracle)
                if action.name in ['move']:
                    last_config = self.oracle.get_robot_config()
                    for _ in range(look_iterations):
                        for obj in belief.objects:
                            if or_state.get(obj, True) is not None:
                                result = look_at_ik(self.oracle, obj)
                                if result is not None:
                                    look_config = self.oracle.get_robot_config(
                                    )
                                    self.plan += [
                                        ('move_no_base', (last_config,
                                                          look_config)),
                                        ('look', (obj, look_config)),
                                    ]
                                    last_config = look_config  # TODO - does this mean I have to change the next action config?
                                    #print 'Looking at', obj
                                    #raw_input('Pause')
                    self.plan.append((action.name, args))
                elif action.name in ['pick', 'place']:
                    obj, pose, grasp, approach_config, pap = args
                    self.plan += [
                        ('move_no_base', (approach_config, pap.vector_config)),
                        ('move_no_base', (pap.vector_config,
                                          pap.grasp_config)),
                        (action.name, args),
                        ('move_no_base', (pap.grasp_config,
                                          pap.vector_config)),
                        ('move_no_base', (pap.vector_config, approach_config)),
                    ]
                    if self.replan:
                        break
                else:
                    self.plan.append((action.name, args))
                #raw_input('Continue?')
            print self.plan

        if not self.plan:
            return None
        print SEPARATOR
        action, args = self.plan.pop(0)
        print action, args
        if not self.plan and self.replan:
            self.plan = None
        return [self.convert_action(belief, action, args)
                ]  # NOTE - need to return a list for now