def construct_network(): net_config = ResnetNoStageConfig() net_config.num_keypoints = 14 net_config.image_channels = 4 net_config.depth_per_keypoint = 2 # depthmap_pred set 2 -> (:,3,:,:) set 3 -> (:,6,:,:) net_config.num_layers = 34 network = ResnetNoStage(net_config) return network, net_config
def construct_network(): net_config = ResnetNoStageConfig() net_config.num_keypoints = 6 net_config.image_channels = 4 net_config.depth_per_keypoint = 1 net_config.num_layers = 34 network = ResnetNoStage(net_config) return network, net_config
def construct_network(): net_config = ResnetNoStageConfig() net_config.num_keypoints = 3 net_config.image_channels = 4 net_config.depth_per_keypoint = 3 # For integral heatmap, depthmap and regress heatmap net_config.num_layers = 34 network = ResnetNoStage(net_config) return network, net_config
def construct_network(for_timeseries_data=False): net_config = ResnetNoStageConfig() net_config.num_keypoints = 2 net_config.image_channels = 4 net_config.depth_per_keypoint = 2 net_config.num_layers = 18 if for_timeseries_data: network = ResnetNoStageLSTM(net_config) else: network = ResnetNoStage(net_config) return network, net_config
def test_output_size(self): from mankey.network.resnet_nostage import ResnetNoStageConfig, ResnetNoStage, init_from_modelzoo config = ResnetNoStageConfig() config.num_layers = 50 config.num_keypoints = 10 config.depth_per_keypoint = 1 config.image_channels = 4 net = ResnetNoStage(config) # Load from model zoo init_from_modelzoo(net, config) # Test on some dymmy image batch_size = 10 img = torch.zeros((batch_size, config.image_channels, 256, 256)) out = net(img) # Check it self.assertEqual(out.shape[0], batch_size) self.assertEqual(out.shape[1], config.num_keypoints * config.depth_per_keypoint) self.assertEqual(out.shape[2], 256 / 4) self.assertEqual(out.shape[3], 256 / 4)