示例#1
0
 def test_get_uneven_data(self):
     # even points
     x, y, z = funcs.get_uneven_data(self.ws2d_point_rag, True)
     np.testing.assert_allclose(x[0], np.array([0.5, 1.5, 2.5, 3.5, 4.5]))
     np.testing.assert_allclose(x[1], np.array([1, 3, 5, 7, 9]))
     np.testing.assert_allclose(y[0], np.array([0.5, 1.5]))
     np.testing.assert_allclose(y[1], np.array([1.5, 2.5]))
     np.testing.assert_allclose(z[0], np.array([2, 2, 2, 2]))
     np.testing.assert_allclose(z[1], np.array([2, 2, 2, 2]))
     # even histo
     x, y, z = funcs.get_uneven_data(self.ws2d_histo_rag, True)
     np.testing.assert_allclose(x[0], np.array([1, 2, 3, 4, 5]))
     np.testing.assert_allclose(x[1], np.array([2, 4, 6, 8, 10]))
     np.testing.assert_allclose(y[0], np.array([5, 7]))
     np.testing.assert_allclose(y[1], np.array([7, 9]))
     np.testing.assert_allclose(z[0], np.array([2, 2, 2, 2]))
     np.testing.assert_allclose(z[1], np.array([2, 2, 2, 2]))
     # uneven points
     x, y, z = funcs.get_uneven_data(self.ws2d_point_uneven, True)
     np.testing.assert_allclose(x[0], np.array([5, 15, 25, 35]))
     np.testing.assert_allclose(x[1], np.array([10, 20, 30, 40, 50]))
     np.testing.assert_allclose(y[0], np.array([0.5, 1.5]))
     np.testing.assert_allclose(y[1], np.array([1.5, 2.5]))
     np.testing.assert_allclose(z[0], np.array([1, 2, 3]))
     np.testing.assert_allclose(z[1], np.array([1, 2, 3, 4]))
     # uneven histo
     x, y, z = funcs.get_uneven_data(self.ws2d_histo_uneven, True)
     np.testing.assert_allclose(x[0], np.array([10, 20, 30, 40]))
     np.testing.assert_allclose(x[1], np.array([15, 25, 35, 45, 55]))
     np.testing.assert_allclose(y[0], np.array([10, 15]))
     np.testing.assert_allclose(y[1], np.array([15, 25]))
     np.testing.assert_allclose(z[0], np.array([1, 2, 3]))
     np.testing.assert_allclose(z[1], np.array([1, 2, 3, 4]))
示例#2
0
 def test_get_uneven_data(self):
     # even points
     x, y, z = funcs.get_uneven_data(self.ws2d_point_rag, True)
     np.testing.assert_allclose(x[0], np.array([0.5, 1.5, 2.5, 3.5, 4.5]))
     np.testing.assert_allclose(x[1], np.array([1, 3, 5, 7, 9]))
     np.testing.assert_allclose(y[0], np.array([0.5, 1.5]))
     np.testing.assert_allclose(y[1], np.array([1.5, 2.5]))
     np.testing.assert_allclose(z[0], np.array([2, 2, 2, 2]))
     np.testing.assert_allclose(z[1], np.array([2, 2, 2, 2]))
     # even histo
     x, y, z = funcs.get_uneven_data(self.ws2d_histo_rag, True)
     np.testing.assert_allclose(x[0], np.array([1, 2, 3, 4, 5]))
     np.testing.assert_allclose(x[1], np.array([2, 4, 6, 8, 10]))
     np.testing.assert_allclose(y[0], np.array([5, 7]))
     np.testing.assert_allclose(y[1], np.array([7, 9]))
     np.testing.assert_allclose(z[0], np.array([2, 2, 2, 2]))
     np.testing.assert_allclose(z[1], np.array([2, 2, 2, 2]))
     # uneven points
     x, y, z = funcs.get_uneven_data(self.ws2d_point_uneven, True)
     np.testing.assert_allclose(x[0], np.array([5, 15, 25, 35]))
     np.testing.assert_allclose(x[1], np.array([10, 20, 30, 40, 50]))
     np.testing.assert_allclose(y[0], np.array([0.5, 1.5]))
     np.testing.assert_allclose(y[1], np.array([1.5, 2.5]))
     np.testing.assert_allclose(z[0], np.array([1, 2, 3]))
     np.testing.assert_allclose(z[1], np.array([1, 2, 3, 4]))
     # uneven histo
     x, y, z = funcs.get_uneven_data(self.ws2d_histo_uneven, True)
     np.testing.assert_allclose(x[0], np.array([10, 20, 30, 40]))
     np.testing.assert_allclose(x[1], np.array([15, 25, 35, 45, 55]))
     np.testing.assert_allclose(y[0], np.array([10, 15]))
     np.testing.assert_allclose(y[1], np.array([15, 25]))
     np.testing.assert_allclose(z[0], np.array([1, 2, 3]))
     np.testing.assert_allclose(z[1], np.array([1, 2, 3, 4]))
示例#3
0
def _pcolorpieces(axes, workspace, distribution, *args, **kwargs):
    '''
    Helper function for pcolor, pcolorfast, and pcolormesh that will
    plot a 2d representation of each spectra. The polycollections or meshes
    will be normalized to the same intensity limits.
    :param axes: :class:`matplotlib.axes.Axes` object that will do the plotting
    :param workspace: :class:`mantid.api.MatrixWorkspace` to extract the data from
    :param distribution: ``None`` (default) asks the workspace. ``False`` means
                         divide by bin width. ``True`` means do not divide by bin width.
                         Applies only when the the matrix workspace is a histogram.
    :param pcolortype: this keyword allows the plotting to be one of pcolormesh or
        pcolorfast if there is "mesh" or "fast" in the value of the keyword, or
        pcolor by default
    :return: A list of the pcolor pieces created
    '''
    (x, y, z) = get_uneven_data(workspace, distribution)
    mini = numpy.min([numpy.min(i) for i in z])
    maxi = numpy.max([numpy.max(i) for i in z])
    if 'vmin' in kwargs:
        mini = kwargs['vmin']
    if 'vmax' in kwargs:
        maxi = kwargs['vmax']
    if 'norm' not in kwargs:
        kwargs['norm'] = matplotlib.colors.Normalize(vmin=mini, vmax=maxi)
    else:
        if kwargs['norm'].vmin is None:
            kwargs['norm'].vmin = mini
        if kwargs['norm'].vmax is None:
            kwargs['norm'].vmax = maxi

    # setup the particular pcolor to use
    pcolortype = kwargs.pop('pcolortype', '').lower()
    if 'mesh' in pcolortype:
        pcolor = axes.pcolormesh
    elif 'fast' in pcolortype:
        pcolor = axes.pcolorfast
    else:
        pcolor = axes.pcolor

    pieces = []
    for xi, yi, zi in zip(x, y, z):
        XX, YY = numpy.meshgrid(xi, yi, indexing='ij')
        pieces.append(pcolor(XX, YY, zi.reshape(-1, 1), **kwargs))

    return pieces
示例#4
0
def _pcolorpieces(axes, workspace, distribution, *args, **kwargs):
    '''
    Helper function for pcolor, pcolorfast, and pcolormesh that will
    plot a 2d representation of each spectra. The polycollections or meshes
    will be normalized to the same intensity limits.
    :param axes: :class:`matplotlib.axes.Axes` object that will do the plotting
    :param workspace: :class:`mantid.api.MatrixWorkspace` to extract the data from
    :param distribution: ``None`` (default) asks the workspace. ``False`` means
                         divide by bin width. ``True`` means do not divide by bin width.
                         Applies only when the the matrix workspace is a histogram.
    :param pcolortype: this keyword allows the plotting to be one of pcolormesh or
        pcolorfast if there is "mesh" or "fast" in the value of the keyword, or
        pcolor by default
    :return: A list of the pcolor pieces created
    '''
    (x, y, z) = get_uneven_data(workspace, distribution)
    mini = numpy.min([numpy.min(i) for i in z])
    maxi = numpy.max([numpy.max(i) for i in z])
    if 'vmin' in kwargs:
        mini = kwargs['vmin']
    if 'vmax' in kwargs:
        maxi = kwargs['vmax']
    if 'norm' not in kwargs:
        kwargs['norm'] = matplotlib.colors.Normalize(vmin=mini, vmax=maxi)
    else:
        if kwargs['norm'].vmin is None:
            kwargs['norm'].vmin = mini
        if kwargs['norm'].vmax is None:
            kwargs['norm'].vmax = maxi

    # setup the particular pcolor to use
    pcolortype = kwargs.pop('pcolortype', '').lower()
    if 'mesh' in pcolortype:
        pcolor = axes.pcolormesh
    elif 'fast' in pcolortype:
        pcolor = axes.pcolorfast
    else:
        pcolor = axes.pcolor

    pieces = []
    for xi, yi, zi in zip(x, y, z):
        XX, YY = numpy.meshgrid(xi, yi, indexing='ij')
        pieces.append(pcolor(XX, YY, zi.reshape(-1, 1), **kwargs))

    return pieces