def convert(self, wavelength_min, wavelength_max, detector_workspace_indexes, monitor_workspace_index,
                correct_monitor=False, bg_min=None, bg_max=None):
        """
        Run the conversion

        Arguments:

        workspace_ids: Start and end ranges. Ids to be considered as workspaces. Nested list syntax supported
        wavelength_min: min wavelength in x for monitor workspace
        wavelength_max: max wavelength in x for detector workspace
        detector_workspace_indexes: Tuple of workspace indexes (or tuple of tuple min, max ranges to keep)
        monitor_workspace_index: The index of the monitor workspace
        correct_monitor: Flag indicating that monitors should have a flat background correction applied
        bg_min: x min background in wavelength
        bg_max: x max background in wavelength

        Returns:
        _monitor_ws: A workspace of monitors
        """
        # Sanity check inputs.
        if wavelength_min >= wavelength_max:
            raise ValueError("Wavelength_min must be < wavelength_max min: %s, max: %s" % (wavelength_min, wavelength_max))

        if correct_monitor and not all((bg_min, bg_max)):
            raise ValueError("Either provide ALL, monitors_to_correct, bg_min, bg_max or none of them")

        if all((bg_min, bg_max)) and bg_min >= bg_max:
            raise ValueError("Background min must be < Background max")

        sum = ConvertToWavelength.sum_workspaces(self.__ws_list)
        sum_wavelength= msi.ConvertUnits(InputWorkspace=sum, Target="Wavelength", AlignBins='1')

        logger.debug("Monitor detector index %s" % str(monitor_workspace_index))

        # Crop out the monitor workspace
        _monitor_ws = msi.CropWorkspace(InputWorkspace=sum_wavelength,
                                        StartWorkspaceIndex=monitor_workspace_index,EndWorkspaceIndex=monitor_workspace_index)
        # Crop out the detector workspace then chop out the x-ranges of interest.
        _detector_ws =  ConvertToWavelength.crop_range(sum_wavelength, detector_workspace_indexes)

        _detector_ws =  msi.CropWorkspace(InputWorkspace=_detector_ws, XMin=wavelength_min, XMax=wavelength_max)

        # Apply a flat background
        if correct_monitor and all((bg_min, bg_max)):
            _monitor_ws = msi.CalculateFlatBackground(InputWorkspace=_monitor_ws,WorkspaceIndexList=0,StartX=bg_min, EndX=bg_max)

        msi.DeleteWorkspace(Workspace=sum_wavelength.name())
        return (_monitor_ws, _detector_ws)
示例#2
0
def _crop_single_ws_in_tof(ws_to_rebin, x_max, x_min):
    """
    Implementation of cropping the single workspace in TOF. First converts to TOF, crops then converts
    back to the original unit.
    :param ws_to_rebin: The workspace to crop
    :param x_max: (Optional) The minimum TOF values to crop to
    :param x_min: (Optional) The maximum TOF values to crop to
    :return: The cropped workspace with the original units
    """
    previous_units = ws_to_rebin.getAxis(0).getUnit().unitID()
    if previous_units != "TOF":
        ws_to_rebin = mantid.ConvertUnits(InputWorkspace=ws_to_rebin,
                                          Target="TOF",
                                          OutputWorkspace=ws_to_rebin)
    if x_min > x_max:
        raise ValueError("XMin is larger than XMax. (" + str(x_min) + " > " +
                         str(x_max) + ")")
    if x_max <= 1 and x_min <= 1:  # If <= 1, cropping by fractions, not absolutes
        x_axis = ws_to_rebin.dataX(0)
        x_min = x_axis[0] * (1 + x_min)
        x_max = x_axis[-1] * x_max
    cropped_ws = mantid.CropWorkspace(InputWorkspace=ws_to_rebin,
                                      OutputWorkspace=ws_to_rebin,
                                      XMin=x_min,
                                      XMax=x_max)
    if previous_units != "TOF":
        cropped_ws = mantid.ConvertUnits(InputWorkspace=cropped_ws,
                                         Target=previous_units,
                                         OutputWorkspace=cropped_ws)
    return cropped_ws
def ProcessVana(rnum, cycle):
    # Preparation of the V/Nd sphere run for SX normalization
    mantid.LoadRaw(Filename='/archive/NDXWISH/Instrument/data/cycle_' + cycle + '/WISH000' + str(rnum) + '.raw',
                   OutputWorkspace='Vana', LoadMonitors='Separate')
    mantid.CropWorkspace(InputWorkspace='Vana', OutputWorkspace='Vana', XMin=6000, XMax=99000)
    mantid.NormaliseByCurrent(InputWorkspace='Vana', OutputWorkspace='Vana')
    mantid.ConvertUnits(InputWorkspace='Vana', OutputWorkspace='Vana', Target='Wavelength')
    # create Abs Correction for V
    shape = '''<sphere id="V-sphere">
    <centre x="0.0"  y="0.0" z="0.0" />
    <radius val="0.0025"/>
    </sphere>'''
    mantid.CreateSampleShape('Vana', shape)
    mantid.SetSampleMaterial('Vana', SampleNumberDensity=0.0719, ScatteringXSection=5.197, AttenuationXSection=4.739,
                             ChemicalFormula='V0.95 Nb0.05')
    mantid.AbsorptionCorrection(InputWorkspace='Vana', OutputWorkspace='Abs_corr', ElementSize=0.5)
    # SphericalAbsorption(InputWorkspace='WISH00038428', OutputWorkspace='Abs_corr_sphere', SphericalSampleRadius=0.25)
    # correct Vanadium run for absorption
    mantid.Divide(LHSWorkspace='Vana', RHSWorkspace='Abs_corr', OutputWorkspace='Vana_Abs')
    mantid.DeleteWorkspace('Vana')
    mantid.DeleteWorkspace('Abs_corr')
    # Smoot data with redius 3
    mantid.SmoothNeighbours(InputWorkspace='Vana_Abs', OutputWorkspace='Vana_smoot', Radius=3)
    mantid.DeleteWorkspace('Vana_Abs')
    # SmoothData38428
    mantid.SmoothData(InputWorkspace='Vana_smoot', OutputWorkspace='Vana_smoot1', NPoints=300)
    mantid.DeleteWorkspace('Vana_smoot')
示例#4
0
def normalise_ws_current(ws_to_correct, monitor_ws, spline_coeff, lambda_values, integration_range, ex_regions):
    processed_monitor_ws = mantid.ConvertUnits(InputWorkspace=monitor_ws, Target="Wavelength")
    processed_monitor_ws = mantid.CropWorkspace(InputWorkspace=processed_monitor_ws,
                                                XMin=lambda_values[0], XMax=lambda_values[-1])

    for reg in range(0, 4):
        processed_monitor_ws = mantid.MaskBins(InputWorkspace=processed_monitor_ws, XMin=ex_regions[0, reg],
                                               XMax=ex_regions[1, reg])

    splined_monitor_ws = mantid.SplineBackground(InputWorkspace=processed_monitor_ws,
                                                 WorkspaceIndex=0, NCoeff=spline_coeff)

    normalised_ws = mantid.ConvertUnits(InputWorkspace=ws_to_correct, Target="Wavelength",
                                        OutputWorkspace=ws_to_correct)
    normalised_ws = mantid.NormaliseToMonitor(InputWorkspace=normalised_ws, MonitorWorkspace=splined_monitor_ws,
                                              IntegrationRangeMin=integration_range[0],
                                              IntegrationRangeMax=integration_range[-1],
                                              OutputWorkspace=normalised_ws)

    normalised_ws = mantid.ConvertUnits(InputWorkspace=normalised_ws, Target="TOF", OutputWorkspace=normalised_ws)

    common.remove_intermediate_workspace(processed_monitor_ws)
    common.remove_intermediate_workspace(splined_monitor_ws)

    return normalised_ws
示例#5
0
    def execute(self, reducer, workspace):
        """
            Trips leading and trailing Nan values from workspace
            @param reducer: unused
            @param workspace: the workspace to convert
        """
        result_ws = mtd[workspace]
        if result_ws.getNumberHistograms() != 1:
            #Strip zeros is only possible on 1D workspaces
            return

        y_vals = result_ws.readY(0)
        length = len(y_vals)
        # Find the first non-zero value
        start = 0
        for i in range(0, length):
            if not self._isNan(y_vals[i]):
                start = i
                break
        # Now find the last non-zero value
        stop = 0
        length -= 1
        for j in range(length, 0,-1):
            if not self._isNan(y_vals[j]):
                stop = j
                break
        # Find the appropriate X values and call CropWorkspace
        x_vals = result_ws.readX(0)
        startX = x_vals[start]
        # Make sure we're inside the bin that we want to crop
        endX = 1.001*x_vals[stop + 1]
        api.CropWorkspace(InputWorkspace=workspace, OutputWorkspace=workspace, XMin=startX, XMax=endX)
示例#6
0
    def PhaseQuad(self, inputs):
        """
        do the phaseQuad algorithm
        groups data into a single set
        """
        cloned_workspace = mantid.CloneWorkspace(
            InputWorkspace=inputs["InputWorkspace"], StoreInADS=False)
        mantid.MaskDetectors(Workspace=cloned_workspace,
                             DetectorList=inputs['MaskedDetectors'],
                             StoreInADS=False)
        mantid.CropWorkspace(InputWorkspace=cloned_workspace,
                             XMin=inputs['FirstGoodData'],
                             XMax=inputs['LastGoodData'],
                             OutputWorkspace='cropped_workspace_pre_phasequad')

        self.alg = mantid.AlgorithmManager.create("PhaseQuad")
        self.alg.initialize()
        self.alg.setRethrows(True)

        self.alg.setProperty("InputWorkspace",
                             'cropped_workspace_pre_phasequad')
        self.alg.setProperty("PhaseTable", "PhaseTable")
        self.alg.setProperty("OutputWorkspace", "__phaseQuad__")
        self.alg.execute()
        mantid.DeleteWorkspace("cropped_workspace_pre_phasequad")
        self.alg = None
示例#7
0
    def crop_range(cls, ws, rng):
        """
        Given a range of workspace indexes to keep (rng), Crop the workspace such that these are kept.
        Arguments:

        ws : Workspace to crop spectrum from
        rng : Tuple of range tuples. syntax may be (start, stop) or ((start0, stop0), (start1, stop1), ...)

        returns a new copy of the workspace with spectra cropped out.
        """

        _in_rng = msi.CloneWorkspace(ws)
        if not isinstance(rng, tuple):
            raise ValueError("Elements must be tuples.")

        def is_actual_range(rng):
            return len(rng) == 2 and isinstance(rng[0], int) and isinstance(
                rng[1], int)

        if is_actual_range(rng):
            start, stop = rng[0], rng[1]
            _in_rng = msi.CropWorkspace(InputWorkspace=_in_rng,
                                        StartWorkspaceIndex=start,
                                        EndWorkspaceIndex=stop)
        else:
            for subrng in rng:
                _in_rng = ConvertToWavelength.crop_range(ws, subrng)

        return _in_rng
示例#8
0
def _focus_mode_trans(output_file_paths, attenuation_filepath,
                      calibrated_spectra):
    summed_ws = mantid.MergeRuns(InputWorkspaces=calibrated_spectra[:9])
    xList = summed_ws.readX(0)

    summed_ws = mantid.CropWorkspace(InputWorkspace=summed_ws,
                                     XMin=xList[1],
                                     Xmax=xList[-2])
    summed_ws = mantid.Scale(InputWorkspace=summed_ws,
                             Factor=0.111111111111111)

    if attenuation_filepath:
        summed_ws = _attenuate_workspace(
            output_file_paths=output_file_paths,
            attenuated_ws=summed_ws,
            attenuation_filepath=attenuation_filepath)

    summed_ws = mantid.ConvertUnits(InputWorkspace=summed_ws, Target="TOF")
    mantid.SaveGSS(InputWorkspace=summed_ws,
                   Filename=output_file_paths["gss_filename"],
                   Append=False,
                   Bank=1)

    mantid.SaveFocusedXYE(InputWorkspace=summed_ws,
                          Filename=output_file_paths["tof_xye_filename"],
                          Append=False,
                          IncludeHeader=False)

    summed_ws = mantid.ConvertUnits(InputWorkspace=summed_ws,
                                    Target="dSpacing")

    # Rename to user friendly name:
    summed_ws_name = output_file_paths["output_name"] + "_mods1-9"
    summed_ws = mantid.RenameWorkspace(InputWorkspace=summed_ws,
                                       OutputWorkspace=summed_ws_name)

    mantid.SaveFocusedXYE(InputWorkspace=summed_ws,
                          Filename=output_file_paths["dspacing_xye_filename"],
                          Append=False,
                          IncludeHeader=False)
    mantid.SaveNexus(InputWorkspace=summed_ws,
                     Filename=output_file_paths["nxs_filename"],
                     Append=False)

    output_list = [summed_ws]

    for i in range(0, 9):
        workspace_name = output_file_paths["output_name"] + "_mod" + str(i + 1)
        to_save = mantid.ConvertUnits(InputWorkspace=calibrated_spectra[i],
                                      Target="dSpacing",
                                      OutputWorkspace=workspace_name)
        output_list.append(to_save)
        mantid.SaveNexus(Filename=output_file_paths["nxs_filename"],
                         InputWorkspace=to_save,
                         Append=True)

    return output_list
示例#9
0
def calc_calibration_without_vanadium(focused_ws, index, instrument):
    focus_spectrum = mantid.ExtractSingleSpectrum(InputWorkspace=focused_ws,
                                                  WorkspaceIndex=index)
    focus_spectrum = mantid.ConvertUnits(InputWorkspace=focus_spectrum,
                                         Target="TOF")
    focus_spectrum = mantid.Rebin(InputWorkspace=focus_spectrum,
                                  Params=instrument.tof_binning)
    focus_calibrated = mantid.CropWorkspace(InputWorkspace=focus_spectrum,
                                            XMin=0.1)
    return focus_calibrated
示例#10
0
    def split_to_single_bank(self, gss_ws_name):
        """
        Split a multiple-bank GSAS workspace to a set of single-spectrum MatrixWorkspace
        Parameters
        ----------
        gss_ws_name

        Returns
        -------
        Name of grouped workspace and list
        """
        # check
        assert isinstance(gss_ws_name, str)
        assert AnalysisDataService.doesExist(gss_ws_name)

        # get workspace
        gss_ws = AnalysisDataService.retrieve(gss_ws_name)

        ws_list = list()
        angle_list = list()

        if gss_ws.getNumberHistograms() == 1:
            # input is already a single-spectrum workspace
            ws_list.append(gss_ws_name)
        else:
            num_spec = gss_ws.getNumberHistograms()

            for i_ws in range(num_spec):
                # split this one to a single workspace
                out_ws_name = '%s_bank%d' % (gss_ws_name, i_ws + 1)
                # also can use ExtractSpectra()
                simpleapi.CropWorkspace(InputWorkspace=gss_ws_name,
                                        OutputWorkspace=out_ws_name,
                                        StartWorkspaceIndex=i_ws,
                                        EndWorkspaceIndex=i_ws)
                assert AnalysisDataService.doesExist(out_ws_name)
                ws_list.append(out_ws_name)

            # END-FOR
        # END-IF

        # calculate bank angles
        for ws_name in ws_list:
            bank_angle = calculate_bank_angle(ws_name)
            angle_list.append(bank_angle)

        # group all the workspace
        ws_group_name = gss_ws_name + '_group'
        simpleapi.GroupWorkspaces(InputWorkspaces=ws_list,
                                  OutputWorkspace=ws_group_name)

        self._braggDataDict[ws_group_name] = (gss_ws_name, ws_list)

        return ws_group_name, ws_list, angle_list
示例#11
0
def load_and_crop_data(runs, spectra, ip_file, diff_mode='single',
                       fit_mode='spectra', rebin_params=None):
    """
    @param runs The string giving the runs to load
    @param spectra A list of spectra to load
    @param ip_file A string denoting the IP file
    @param diff_mode Either 'double' or 'single'
    @param fit_mode If bank then the loading is changed to summing each bank to a separate spectrum
    @param rebin_params Rebin parameter string to rebin data by (no rebin if None)
    """
    instrument = VESUVIO()
    load_banks = (fit_mode == 'bank')
    output_name = _create_tof_workspace_suffix(runs, spectra)

    if load_banks:
        sum_spectra = True
        if spectra == "forward":
            bank_ranges = instrument.forward_banks
        elif spectra == "backward":
            bank_ranges = instrument.backward_banks
        else:
            raise ValueError("Fitting by bank requires selecting either 'forward' or 'backward' "
                             "for the spectra to load")
        bank_ranges = ["{0}-{1}".format(x, y) for x, y in bank_ranges]
        spectra = ";".join(bank_ranges)
    else:
        sum_spectra = False
        if spectra == "forward":
            spectra = "{0}-{1}".format(*instrument.forward_spectra)
        elif spectra == "backward":
            spectra = "{0}-{1}".format(*instrument.backward_spectra)

    if diff_mode == "double":
        diff_mode = "DoubleDifference"
    else:
        diff_mode = "SingleDifference"

    kwargs = {"Filename": runs,
              "Mode": diff_mode, "InstrumentParFile": ip_file,
              "SpectrumList": spectra, "SumSpectra": sum_spectra,
              "OutputWorkspace": output_name}
    full_range = ms.LoadVesuvio(**kwargs)
    tof_data = ms.CropWorkspace(InputWorkspace=full_range,
                                XMin=instrument.tof_range[0],
                                XMax=instrument.tof_range[1],
                                OutputWorkspace=output_name)

    if rebin_params is not None:
        tof_data = ms.Rebin(InputWorkspace=tof_data,
                            OutputWorkspace=output_name,
                            Params=rebin_params)

    return tof_data
示例#12
0
    def PyExec(self):
        """ Main execution body
        """
        inputws = self.getProperty("InputWorkspace").value

        run = inputws.getRun()
        channel_width = float(run.getLogData('channel_width').value)
        full_channels = float(run.getLogData('full_channels').value)
        tof1 = float(run.getLogData('TOF1').value)

        outputws = api.CropWorkspace(inputws, XMin=0., XMax=full_channels*channel_width + tof1, StoreInADS=False)
        self.setProperty("OutputWorkspace", outputws)
示例#13
0
def save_gda(d_spacing_group, output_path, gsas_calib_filename, grouping_scheme,raise_warning):
    if raise_warning:
        raise RuntimeWarning("Could not save gda file, as GSAS calibration file was not found. "
                             "It should be present at " + gsas_calib_filename)
        return
    input_ws = mantid.CropWorkspace(InputWorkspace=d_spacing_group,
                                    XMax=10,
                                    StoreInADS=False)
    mantid.SaveGDA(InputWorkspace=input_ws,
                   GSASParamFile=gsas_calib_filename,
                   GroupingScheme=grouping_scheme,
                   OutputFilename=output_path)
示例#14
0
def Norm_data(rnum, cycle):
    # Load and normalize SX data
    mantid.LoadRaw(
        Filename='/archive/Instruments$/NDXWISH/Instrument/data/cycle_' +
        cycle + '/WISH000' + str(rnum) + '.raw',
        OutputWorkspace='WISH000' + str(rnum),
        LoadMonitors='Separate')
    # ConvertToEventWorkspace(InputWorkspace='WISH000'+str(rnum), OutputWorkspace='WISH000'+str(rnum))
    mantid.CropWorkspace(InputWorkspace='WISH000' + str(rnum),
                         OutputWorkspace='WISH000' + str(i),
                         XMin=6000,
                         XMax=99000)
    mantid.ConvertUnits(InputWorkspace='WISH000' + str(rnum),
                        OutputWorkspace='WISH000' + str(rnum),
                        Target='Wavelength')
    mantid.NormaliseByCurrent(InputWorkspace='WISH000' + str(rnum),
                              OutputWorkspace='WISH000' + str(rnum))
    # normalize By vanadium PredictPeaks
    mantid.CropWorkspace(InputWorkspace='WISH000' + str(rnum),
                         OutputWorkspace='WISH000' + str(rnum),
                         XMin=0.75,
                         XMax=9.3)
    mantid.RebinToWorkspace(WorkspaceToRebin='Vana_smoot1',
                            WorkspaceToMatch='WISH000' + str(rnum),
                            OutputWorkspace='Vana_smoot1')
    mantid.Divide(LHSWorkspace='WISH000' + str(rnum),
                  RHSWorkspace='Vana_smoot1',
                  OutputWorkspace='WISH000' + str(rnum))
    # remove spike in the data above 1e15 and -1e15
    mantid.ReplaceSpecialValues(InputWorkspace='WISH000' + str(rnum),
                                OutputWorkspace='WISH000' + str(rnum),
                                NaNValue=0,
                                InfinityValue=0,
                                BigNumberThreshold=1e15,
                                SmallNumberThreshold=-1e15)
    # Convert to Diffraction MD and Lorentz Correction
    mantid.ConvertToDiffractionMDWorkspace(
        InputWorkspace='WISH000' + str(rnum),
        OutputWorkspace='WISH000' + str(rnum) + '_MD',
        LorentzCorrection=True)
示例#15
0
def _crop_spline_to_percent_of_max(spline, input_ws, output_workspace):
    spline_spectrum = spline.readY(0)
    y_val = numpy.amax(spline_spectrum)
    y_val = y_val / 100
    x_list = input_ws.readX(0)
    small_spline_indecies = numpy.nonzero(spline_spectrum > y_val)[0]
    x_max = x_list[small_spline_indecies[-1]]
    x_min = x_list[small_spline_indecies[0]]
    output = mantid.CropWorkspace(inputWorkspace=input_ws,
                                  XMin=x_min,
                                  XMax=x_max,
                                  OutputWorkspace=output_workspace)
    return output
示例#16
0
def extract_ws_spectra(ws_to_split):
    """
    Extracts individual spectra from the workspace into a list of workspaces. Each workspace will contain
    one of the spectra from the workspace and will have the form of "<ws_name>_<spectrum number>".
    :param ws_to_split: The workspace to split into individual workspaces
    :return: A list of extracted workspaces - one per spectra in the original workspace
    """
    num_spectra = ws_to_split.getNumberHistograms()
    spectra_bank_list = []
    for i in range(0, num_spectra):
        output_name = ws_to_split.getName() + "-" + str(i + 1)
        # Have to use crop workspace as extract single spectrum struggles with the variable bin widths
        spectra_bank_list.append(mantid.CropWorkspace(InputWorkspace=ws_to_split, OutputWorkspace=output_name,
                                                      StartWorkspaceIndex=i, EndWorkspaceIndex=i))
    return spectra_bank_list
示例#17
0
    def PyExec(self):
        import mantid.simpleapi as ms

        self.log().warning(
            'FindReflectometryLines algorithm version 1 has been deprecated and will be removed in a future release.'
        )

        in_ws = self.getPropertyValue("InputWorkspace")
        min_wavelength = self.getPropertyValue("StartWavelength")
        keep_workspaces = self.getPropertyValue("KeepIntermediateWorkspaces")

        # Crop off lower wavelengths where the signal is also lower.
        cropped_ws = ms.CropWorkspace(InputWorkspace=in_ws,
                                      XMin=float(min_wavelength))
        # Integrate over the higher wavelengths after cropping.
        summed_ws = ms.Integration(InputWorkspace=cropped_ws)
        # Loop through each histogram, and fetch out each intensity value from the single bin to generate a list of all values.
        n_histograms = summed_ws.getNumberHistograms()
        y_data = np.empty([n_histograms])
        for i in range(0, n_histograms):
            intensity = summed_ws.readY(i)[0]
            y_data[i] = intensity
        #Remove the background
        y_data = self.__remove_background(y_data)
        #Find the peaks
        peak_index_list = self.__find_peak_spectrum_numbers(y_data, summed_ws)
        #Reverse the order so that it goes from high spec number to low spec number
        peak_index_list.reverse()
        n_peaks_found = len(peak_index_list)

        output_ws = WorkspaceFactory.createTable("TableWorkspace")
        output_ws.addColumn("int", "Reflected Spectrum Number")

        if n_peaks_found > 2:
            raise PeakFindingException("Found more than two peaks.")
        elif n_peaks_found == 0:
            raise PeakFindingException("No peaks found")
        elif n_peaks_found == 1:
            output_ws.addRow(peak_index_list)
        elif n_peaks_found == 2:
            output_ws.addColumn("int", "Transmission Spectrum Number")
            output_ws.addRow(peak_index_list)

        if int(keep_workspaces) == 0:
            ms.DeleteWorkspace(Workspace=cropped_ws)
            ms.DeleteWorkspace(Workspace=summed_ws)

        self.setProperty("OutputWorkspace", output_ws)
示例#18
0
 def read_event_nexus(self, number, output, panel):
     simple.RenameWorkspace("{}_monitors".format(output),
                            "w{}_monitors".format(number))
     simple.Rebin(InputWorkspace=output,
                  OutputWorkspace=output,
                  Params='6000,-0.00063,110000')
     simple.ConvertToMatrixWorkspace(output, output)
     spectra_min, spectra_max = self.return_panel.get(panel)
     simple.CropWorkspace(InputWorkspace=output,
                          OutputWorkspace=output,
                          StartWorkspaceIndex=spectra_min - 6,
                          EndWorkspaceIndex=spectra_max - 6)
     simple.MaskBins(InputWorkspace=output,
                     OutputWorkspace=output,
                     XMin=99900,
                     XMax=106000)
示例#19
0
def _crop_spline_to_percent_of_max(spline, input_ws, output_workspace, min_value, max_value):
    spline_spectrum = spline.readY(0)
    if not spline_spectrum.any():
        return mantid.CloneWorkspace(inputWorkspace=input_ws, OutputWorkspace=output_workspace)

    x_list = input_ws.readX(0)
    min_index = x_list.searchsorted(min_value)
    max_index = x_list.searchsorted(max_value)
    sliced_spline_spectrum = spline_spectrum[min_index:max_index:1]
    y_val = numpy.amax(sliced_spline_spectrum)
    y_val = y_val / 100
    small_spline_indecies = numpy.nonzero(spline_spectrum > y_val)[0]
    x_max = x_list[small_spline_indecies[-1]]
    x_min = x_list[small_spline_indecies[0]]
    output = mantid.CropWorkspace(inputWorkspace=input_ws, XMin=x_min, XMax=x_max, OutputWorkspace=output_workspace)
    return output
示例#20
0
def _crop_single_ws_in_tof(ws_to_rebin, x_max, x_min):
    """
    Implementation of cropping the single workspace in TOF. First converts to TOF, crops then converts
    back to the original unit.
    :param ws_to_rebin: The workspace to crop
    :param x_max: (Optional) The minimum TOF values to crop to
    :param x_min: (Optional) The maximum TOF values to crop to
    :return: The cropped workspace with the original units
    """
    previous_units = ws_to_rebin.getAxis(0).getUnit().unitID()
    if previous_units != "TOF":
        ws_to_rebin = mantid.ConvertUnits(InputWorkspace=ws_to_rebin, Target="TOF", OutputWorkspace=ws_to_rebin)
    cropped_ws = mantid.CropWorkspace(InputWorkspace=ws_to_rebin, OutputWorkspace=ws_to_rebin,
                                      XMin=x_min, XMax=x_max)
    if previous_units != "TOF":
        cropped_ws = mantid.ConvertUnits(InputWorkspace=cropped_ws, Target=previous_units, OutputWorkspace=cropped_ws)
    return cropped_ws
示例#21
0
def normalise_ws_current(ws_to_correct, monitor_ws, spline_coeff,
                         lambda_values, integration_range):
    processed_monitor_ws = mantid.ConvertUnits(InputWorkspace=monitor_ws,
                                               Target="Wavelength")
    processed_monitor_ws = mantid.CropWorkspace(
        InputWorkspace=processed_monitor_ws,
        XMin=lambda_values[0],
        XMax=lambda_values[-1])
    # TODO move these masks to the adv. config file
    ex_regions = numpy.zeros((2, 4))
    ex_regions[:, 0] = [3.45, 3.7]
    ex_regions[:, 1] = [2.96, 3.2]
    ex_regions[:, 2] = [2.1, 2.26]
    ex_regions[:, 3] = [1.73, 1.98]

    for reg in range(0, 4):
        processed_monitor_ws = mantid.MaskBins(
            InputWorkspace=processed_monitor_ws,
            XMin=ex_regions[0, reg],
            XMax=ex_regions[1, reg])

    splined_monitor_ws = mantid.SplineBackground(
        InputWorkspace=processed_monitor_ws,
        WorkspaceIndex=0,
        NCoeff=spline_coeff)

    normalised_ws = mantid.ConvertUnits(InputWorkspace=ws_to_correct,
                                        Target="Wavelength",
                                        OutputWorkspace=ws_to_correct)
    normalised_ws = mantid.NormaliseToMonitor(
        InputWorkspace=normalised_ws,
        MonitorWorkspace=splined_monitor_ws,
        IntegrationRangeMin=integration_range[0],
        IntegrationRangeMax=integration_range[-1],
        OutputWorkspace=normalised_ws)

    normalised_ws = mantid.ConvertUnits(InputWorkspace=normalised_ws,
                                        Target="TOF",
                                        OutputWorkspace=normalised_ws)

    common.remove_intermediate_workspace(processed_monitor_ws)
    common.remove_intermediate_workspace(splined_monitor_ws)

    return normalised_ws
def make_workspace(coord: str,
                   emode: str = 'Elastic',
                   efixed: Optional[sc.Variable] = None) -> 'sapi.Workspace':
    ws = sapi.CreateSampleWorkspace(XMin=1000, NumBanks=1, StoreInADS=False)
    # Crop out spectra index 0 as has two_theta=0, gives inf d-spacing
    ws = sapi.CropWorkspace(ws, StartWorkspaceIndex=1, StoreInADS=False)
    ws = sapi.ConvertUnits(InputWorkspace=ws,
                           Target=mantid_coord(coord),
                           EMode=emode,
                           EFixed=efixed.value if efixed is not None else None,
                           StoreInADS=False)  # start in origin units
    ws.mutableRun().addProperty(
        'deltaE-mode', kernel.StringPropertyWithValue('deltaE-mode', emode),
        '', True)
    if efixed is not None:
        ws.mutableRun().addProperty(
            'Ei', kernel.FloatPropertyWithValue('Ei', efixed.value),
            str(efixed.unit), False)
    return ws
示例#23
0
 def focus_onepanel(self, work, focus, panel):
     cal = "WISH_diff{}"
     if cal.format("_cal") not in simple.mtd:
         simple.LoadDiffCal(filename=self.get_cal(),
                            InstrumentName="WISH",
                            WorkspaceName=cal.format(""))
     simple.AlignDetectors(InputWorkspace=work,
                           OutputWorkspace=work,
                           CalibrationWorkspace=cal.format("_cal"))
     simple.DiffractionFocussing(InputWorkspace=work,
                                 OutputWorkspace=focus,
                                 GroupingWorkspace=cal.format("_group"))
     if self.deleteWorkspace:
         simple.DeleteWorkspace(work)
     if panel == 5 or panel == 6:
         simple.CropWorkspace(InputWorkspace=focus,
                              OutputWorkspace=focus,
                              XMin=0.3)
     return focus
示例#24
0
def _sum_groups_of_three_ws(calibrated_spectra, output_file_names):
    output_list = []

    for i in range(3):
        ws_name = output_file_names["output_name"] + "_mods{}-{}".format(
            i * 3 + 1, (i + 1) * 3)
        summed_spectra = mantid.MergeRuns(
            InputWorkspaces=calibrated_spectra[i * 3:(i + 1) * 3],
            OutputWorkspace=ws_name)
        xList = summed_spectra.readX(0)

        summed_spectra = mantid.CropWorkspace(InputWorkspace=summed_spectra,
                                              XMin=xList[1],
                                              Xmax=xList[-2])
        scaled = mantid.Scale(InputWorkspace=summed_spectra,
                              Factor=1. / 3,
                              OutputWorkspace=ws_name)
        output_list.append(scaled)

    return output_list
示例#25
0
    def _run_get_monitor(self, run_number, input_dir, spline_terms):
        load_monitor_ws = common._load_monitor(run_number, input_dir=input_dir, instrument=self)
        get_monitor_ws = mantid.ConvertUnits(InputWorkspace=load_monitor_ws, Target="Wavelength")
        common.remove_intermediate_workspace(load_monitor_ws)
        lmin, lmax = self._get_lambda_range()
        get_monitor_ws = mantid.CropWorkspace(InputWorkspace=get_monitor_ws, XMin=lmin, XMax=lmax)
        ex_regions = numpy.zeros((2, 4))
        ex_regions[:, 0] = [3.45, 3.7]
        ex_regions[:, 1] = [2.96, 3.2]
        ex_regions[:, 2] = [2.1, 2.26]
        ex_regions[:, 3] = [1.73, 1.98]
        # ConvertToDistribution(works)

        for reg in range(0, 4):
            get_monitor_ws = mantid.MaskBins(InputWorkspace=get_monitor_ws, XMin=ex_regions[0, reg],
                                             XMax=ex_regions[1, reg])

        monitor_ws = mantid.SplineBackground(InputWorkspace=get_monitor_ws, WorkspaceIndex=0, NCoeff=spline_terms)
        common.remove_intermediate_workspace(get_monitor_ws)
        return monitor_ws
示例#26
0
def _apply_vanadium_norm(sample_ws_foc, van_ws_foc):
    # divide by curves - automatically corrects for solid angle, det efficiency and lambda dep. flux
    sample_ws_foc = mantid.CropWorkspace(InputWorkspace=sample_ws_foc,
                                         OutputWorkspace=sample_ws_foc.name(),
                                         XMin=0.45)
    van_ws_foc_rb = mantid.RebinToWorkspace(
        WorkspaceToRebin=van_ws_foc,
        WorkspaceToMatch=sample_ws_foc,
        OutputWorkspace=VAN_CURVE_REBINNED_NAME)  # copy so as not to lose data
    sample_ws_foc = mantid.Divide(LHSWorkspace=sample_ws_foc,
                                  RHSWorkspace=van_ws_foc_rb,
                                  OutputWorkspace=sample_ws_foc.name(),
                                  AllowDifferentNumberSpectra=False)
    sample_ws_foc = mantid.ReplaceSpecialValues(
        InputWorkspace=sample_ws_foc,
        OutputWorkspace=sample_ws_foc.name(),
        NaNValue=0,
        NaNError=0.0,
        InfinityValue=0,
        InfinityError=0.0)
    return sample_ws_foc
示例#27
0
 def focus_onepanel(self, work, focus, panel):
     cal = "WISH_diff{}"
     if cal.format("_cal") not in simple.mtd:
         simple.LoadDiffCal(filename=self.get_cal(),
                            InstrumentName="WISH",
                            WorkspaceName=cal.format(""))
     simple.AlignAndFocusPowder(InputWorkspace=work,
                                OutputWorkspace=focus,
                                GroupingWorkspace=cal.format("_group"),
                                CalibrationWorkspace=cal.format("_cal"),
                                Dspacing=True,
                                params="-0.00063")
     simple.ConvertUnits(InputWorkspace=focus,
                         OutputWorkspace=focus,
                         Target="dSpacing")
     if self.deleteWorkspace:
         simple.DeleteWorkspace(work)
     if panel == 5 or panel == 6:
         simple.CropWorkspace(InputWorkspace=focus,
                              OutputWorkspace=focus,
                              XMin=0.3)
     return focus
示例#28
0
def calc_calibration_with_vanadium(focused_ws, index, vanadium_ws, instrument):
    data_ws = mantid.ExtractSingleSpectrum(InputWorkspace=focused_ws,
                                           WorkspaceIndex=index)
    data_ws = mantid.ConvertUnits(InputWorkspace=data_ws, Target="TOF")
    data_ws = mantid.Rebin(InputWorkspace=data_ws,
                           Params=instrument._get_focus_tof_binning())

    data_processed = "van_processed" + str(
        index)  # Workaround for Mantid overwriting the WS in a loop

    mantid.Divide(LHSWorkspace=data_ws,
                  RHSWorkspace=vanadium_ws,
                  OutputWorkspace=data_processed)
    mantid.CropWorkspace(InputWorkspace=data_processed,
                         XMin=0.1,
                         OutputWorkspace=data_processed)
    mantid.Scale(InputWorkspace=data_processed,
                 Factor=10,
                 OutputWorkspace=data_processed)

    remove_intermediate_workspace(data_ws)

    return data_processed
示例#29
0
    def PyExec(self):
        workflow_prog = Progress(self, start=0.0, end=0.3, nreports=4)
        workflow_prog.report('Setting up algorithm')
        self._setup()

        input_ws = mtd[self._sample]

        min_spectrum_index = input_ws.getIndexFromSpectrumNumber(
            int(self._spectra_range[0]))
        max_spectrum_index = input_ws.getIndexFromSpectrumNumber(
            int(self._spectra_range[1]))

        # Crop to the required spectra range
        workflow_prog.report('Cropping Workspace')
        cropped_input = ms.CropWorkspace(
            InputWorkspace=input_ws,
            OutputWorkspace='__symm',
            StartWorkspaceIndex=min_spectrum_index,
            EndWorkspaceIndex=max_spectrum_index)
        # Find the smallest data array in the first spectra
        len_x = len(cropped_input.readX(0))
        len_y = len(cropped_input.readY(0))
        len_e = len(cropped_input.readE(0))
        sample_array_len = min(len_x, len_y, len_e)

        sample_x = cropped_input.readX(0)

        # Get slice bounds of array
        try:
            workflow_prog.report('Calculating array points')
            self._calculate_array_points(sample_x, sample_array_len)
        except Exception as exc:
            raise RuntimeError(
                'Failed to calculate array slice boundaries: %s' % exc.message)

        max_sample_index = sample_array_len - 1
        centre_range_len = self._positive_min_index + self._negative_min_index
        positive_diff_range_len = max_sample_index - self._positive_max_index

        output_cut_index = max_sample_index - self._positive_min_index - positive_diff_range_len - 1
        new_array_len = 2 * max_sample_index - centre_range_len - 2 * positive_diff_range_len - 1

        logger.information('Sample array length = %d' % sample_array_len)

        logger.information(
            'Positive X min at i=%d, x=%f' %
            (self._positive_min_index, sample_x[self._positive_min_index]))
        logger.information(
            'Negative X min at i=%d, x=%f' %
            (self._negative_min_index, sample_x[self._negative_min_index]))

        logger.information(
            'Positive X max at i=%d, x=%f' %
            (self._positive_max_index, sample_x[self._positive_max_index]))

        logger.information('New array length = %d' % new_array_len)
        logger.information('Output array LR split index = %d' %
                           output_cut_index)

        # Create an empty workspace with enough storage for the new data
        workflow_prog.report('Creating OutputWorkspace')
        out_ws = WorkspaceFactory.Instance().create(
            cropped_input, cropped_input.getNumberHistograms(),
            int(new_array_len), int(new_array_len))

        # For each spectrum copy positive values to the negative
        pop_prog = Progress(self,
                            start=0.3,
                            end=0.95,
                            nreports=out_ws.getNumberHistograms())
        for idx in range(out_ws.getNumberHistograms()):
            pop_prog.report('Populating data in workspace %i' % idx)
            # Strip any additional array cells
            x_in = cropped_input.readX(idx)[:sample_array_len]
            y_in = cropped_input.readY(idx)[:sample_array_len]
            e_in = cropped_input.readE(idx)[:sample_array_len]

            # Get some zeroed data to overwrite with copies from sample
            x_out = np.zeros(new_array_len)
            y_out = np.zeros(new_array_len)
            e_out = np.zeros(new_array_len)

            # Left hand side (reflected)
            x_out[:output_cut_index] = -x_in[self._positive_max_index -
                                             1:self._positive_min_index:-1]
            y_out[:output_cut_index] = y_in[self._positive_max_index -
                                            1:self._positive_min_index:-1]
            e_out[:output_cut_index] = e_in[self._positive_max_index -
                                            1:self._positive_min_index:-1]

            # Right hand side (copied)
            x_out[output_cut_index:] = x_in[self._negative_min_index:self.
                                            _positive_max_index]
            y_out[output_cut_index:] = y_in[self._negative_min_index:self.
                                            _positive_max_index]
            e_out[output_cut_index:] = e_in[self._negative_min_index:self.
                                            _positive_max_index]

            # Set output spectrum data
            out_ws.setX(idx, x_out)
            out_ws.setY(idx, y_out)
            out_ws.setE(idx, e_out)

            logger.information('Symmetrise spectrum %d' % idx)

        end_prog = Progress(self, start=0.95, end=1.0, nreports=3)
        end_prog.report('Deleting temp workspaces')
        ms.DeleteWorkspace(cropped_input)

        if self._props_output_workspace != '':
            end_prog.report('Generating property table')
            self._generate_props_table()

        self.setProperty('OutputWorkspace', out_ws)
        end_prog.report('Algorithm Complete')
示例#30
0
    def _load_and_sum_runs(self, spectra):
        """Load the input set of runs & sum them if there
        is more than one.
            @param spectra :: The list of spectra to load
            @returns a tuple of length 2 containing (main_detector_ws, monitor_ws)
        """
        isis = config.getFacility("ISIS")
        inst_prefix = isis.instrument("VESUVIO").shortName()

        runs = self._get_runs()

        self.summed_ws, self.summed_mon = "__loadraw_evs", "__loadraw_evs_monitors"
        for index, run in enumerate(runs):
            run = inst_prefix + str(run)
            self._raise_error_period_scatter(run, self._back_scattering)
            if index == 0:
                out_name, out_mon = SUMMED_WS, SUMMED_MON
            else:
                out_name, out_mon = SUMMED_WS + 'tmp', SUMMED_MON + 'tmp'

            # Load data
            raw_filepath = FileFinder.findRuns(run)[0]
            ms.LoadRaw(Filename=raw_filepath,
                       SpectrumList=spectra,
                       OutputWorkspace=out_name,
                       LoadMonitors='Exclude',
                       EnableLogging=_LOGGING_)
            ms.LoadRaw(Filename=raw_filepath,
                       SpectrumList=self._mon_spectra,
                       OutputWorkspace=out_mon,
                       EnableLogging=_LOGGING_)

            # Sum
            if index > 0:
                ms.Plus(LHSWorkspace=SUMMED_WS,
                        RHSWorkspace=out_name,
                        OutputWorkspace=SUMMED_WS,
                        EnableLogging=_LOGGING_)
                ms.Plus(LHSWorkspace=SUMMED_MON,
                        RHSWorkspace=out_mon,
                        OutputWorkspace=SUMMED_MON,
                        EnableLogging=_LOGGING_)

                ms.DeleteWorkspace(out_name, EnableLogging=_LOGGING_)
                ms.DeleteWorkspace(out_mon, EnableLogging=_LOGGING_)

        # Check to see if extra data needs to be loaded to normalise in data
        x_max = self._tof_max
        if self._foil_out_norm_end > self._tof_max:
            x_max = self._foil_out_norm_end
            self._crop_required = True

        ms.CropWorkspace(Inputworkspace= SUMMED_WS,
                         OutputWorkspace=SUMMED_WS,
                         XMax=x_max,
                         EnableLogging=_LOGGING_)
        ms.CropWorkspace(Inputworkspace= SUMMED_MON,
                         OutputWorkspace=SUMMED_MON,
                         XMax=self._mon_tof_max,
                         EnableLogging=_LOGGING_)

        summed_data, summed_mon = mtd[SUMMED_WS], mtd[SUMMED_MON]
        self._load_diff_mode_parameters(summed_data)
        return summed_data, summed_mon