def test_save_file_check_contents(self):
        save_file(self.wksp, self.out_ascii)
        out_wksp = LoadAscii(self.out_ascii, Separator='Space')
        out_wksp = ConvertToHistogram(out_wksp)

        self.assertEqual(out_wksp.blocksize(),
                         self.wksp.blocksize())
        self.assertEqual(out_wksp.getNumberHistograms(),
                         self.wksp.getNumberHistograms())
        self.assertTrue(np.allclose(out_wksp.getAxis(0).extractValues(),
                                    self.wksp.getAxis(0).extractValues())
                        )
示例#2
0
 def merge_and_crop_workspaces(self, workspaces):
     """ where workspaces is a tuple of form:
             (filepath, ws name)
     """
     workspace_name = self.getPropertyValue('GroupWorkspace')
     # detectors is a dictionary of {detector_name : [names_of_workspaces]}
     detectors = {
         f"{workspace_name}; Detector {x}": []
         for x in range(1, 5)
     }
     # fill dictionary
     for workspace in workspaces:
         detector_number = workspace[0]
         detectors[f"{workspace_name}; Detector {detector_number}"].append(
             workspace)
     # initialise a group workspace
     overall_ws = WorkspaceGroup()
     # merge each workspace list in detectors into a single workspace
     for detector, workspace_list in detectors.items():
         if workspace_list:
             # sort workspace list according to type_index
             sorted_workspace_list = [None] * NUM_FILES_PER_DETECTOR
             # sort workspace list according to type_index
             for workspace in workspace_list:
                 data_type = workspace.rsplit("_")[1]
                 sorted_workspace_list[SPECTRUM_INDEX[data_type] -
                                       1] = workspace
             workspace_list = sorted_workspace_list
             # create merged workspace
             merged_ws = self.create_merged_workspace(workspace_list)
             ConvertToHistogram(InputWorkspace=merged_ws,
                                OutputWorkspace=detector)
             minX, maxX = [], []
             ws = AnalysisDataService.retrieve(detector)
             for i in range(ws.getNumberHistograms()):
                 xdata = ws.readX(i)
                 minX.append(xdata[0])
                 if i == 2:
                     maxX.append(xdata[-1])
                 else:
                     maxX.append(xdata[-1] - 1)
             CropWorkspaceRagged(InputWorkspace=detector,
                                 OutputWorkspace=detector,
                                 xmin=minX,
                                 xmax=maxX)
             overall_ws.addWorkspace(AnalysisDataService.retrieve(detector))
     self.setProperty("GroupWorkspace", overall_ws)
def TotalScatteringReduction(config=None):
    facility = config['Facility']
    title = config['Title']
    instr = config['Instrument']

    # Get an instance to Mantid's logger
    log = Logger("TotalScatteringReduction")

    # Get sample info
    sample = get_sample(config)
    sam_mass_density = sample.get('MassDensity', None)
    sam_packing_fraction = sample.get('PackingFraction', None)
    sam_geometry = sample.get('Geometry', None)
    sam_material = sample.get('Material', None)

    sam_geo_dict = {
        'Shape': 'Cylinder',
        'Radius': config['Sample']['Geometry']['Radius'],
        'Height': config['Sample']['Geometry']['Height']
    }
    sam_mat_dict = {
        'ChemicalFormula': sam_material,
        'SampleMassDensity': sam_mass_density
    }
    if 'Environment' in config:
        sam_env_dict = {
            'Name': config['Environment']['Name'],
            'Container': config['Environment']['Container']
        }
    else:
        sam_env_dict = {'Name': 'InAir', 'Container': 'PAC06'}
    # Get normalization info
    van = get_normalization(config)
    van_mass_density = van.get('MassDensity', None)
    van_packing_fraction = van.get('PackingFraction', 1.0)
    van_geometry = van.get('Geometry', None)
    van_material = van.get('Material', 'V')

    van_geo_dict = {
        'Shape': 'Cylinder',
        'Radius': config['Normalization']['Geometry']['Radius'],
        'Height': config['Normalization']['Geometry']['Height']
    }
    van_mat_dict = {
        'ChemicalFormula': van_material,
        'SampleMassDensity': van_mass_density
    }

    # Get calibration, characterization, and other settings
    merging = config['Merging']
    binning = merging['QBinning']
    characterizations = merging.get('Characterizations', None)

    # Grouping
    grouping = merging.get('Grouping', None)
    cache_dir = config.get("CacheDir", os.path.abspath('.'))
    OutputDir = config.get("OutputDir", os.path.abspath('.'))

    # Create Nexus file basenames
    sample['Runs'] = expand_ints(sample['Runs'])
    sample['Background']['Runs'] = expand_ints(sample['Background'].get(
        'Runs', None))
    '''
    Currently not implemented:
    # wkspIndices = merging.get('SumBanks', None)
    # high_q_linear_fit_range = config['HighQLinearFitRange']

    POWGEN options not used
    #alignAndFocusArgs['RemovePromptPulseWidth'] = 50
    # alignAndFocusArgs['CompressTolerance'] use defaults
    # alignAndFocusArgs['UnwrapRef'] POWGEN option
    # alignAndFocusArgs['LowResRef'] POWGEN option
    # alignAndFocusArgs['LowResSpectrumOffset'] POWGEN option

    How much of each bank gets merged has info here in the form of
    # {"ID", "Qmin", "QMax"}
    # alignAndFocusArgs['CropWavelengthMin'] from characterizations file
    # alignAndFocusArgs['CropWavelengthMax'] from characterizations file
    '''

    if facility == 'SNS':
        facility_file_format = '%s_%d'
    else:
        facility_file_format = '%s%d'

    sam_scans = ','.join(
        [facility_file_format % (instr, num) for num in sample['Runs']])
    container_scans = ','.join([
        facility_file_format % (instr, num)
        for num in sample['Background']["Runs"]
    ])
    container_bg = None
    if "Background" in sample['Background']:
        sample['Background']['Background']['Runs'] = expand_ints(
            sample['Background']['Background']['Runs'])
        container_bg = ','.join([
            facility_file_format % (instr, num)
            for num in sample['Background']['Background']['Runs']
        ])
        if len(container_bg) == 0:
            container_bg = None

    van['Runs'] = expand_ints(van['Runs'])
    van_scans = ','.join(
        [facility_file_format % (instr, num) for num in van['Runs']])

    van_bg_scans = None
    if 'Background' in van:
        van_bg_scans = van['Background']['Runs']
        van_bg_scans = expand_ints(van_bg_scans)
        van_bg_scans = ','.join(
            [facility_file_format % (instr, num) for num in van_bg_scans])

    # Override Nexus file basename with Filenames if present
    if "Filenames" in sample:
        sam_scans = ','.join(sample["Filenames"])
    if "Filenames" in sample['Background']:
        container_scans = ','.join(sample['Background']["Filenames"])
    if "Background" in sample['Background']:
        if "Filenames" in sample['Background']['Background']:
            container_bg = ','.join(
                sample['Background']['Background']['Filenames'])
    if "Filenames" in van:
        van_scans = ','.join(van["Filenames"])
    if "Background" in van:
        if "Filenames" in van['Background']:
            van_bg_scans = ','.join(van['Background']["Filenames"])

    # Output nexus filename
    nexus_filename = title + '.nxs'
    try:
        os.remove(nexus_filename)
    except OSError:
        pass

    # Get sample corrections
    sam_abs_corr = sample.get("AbsorptionCorrection", None)
    sam_ms_corr = sample.get("MultipleScatteringCorrection", None)
    sam_inelastic_corr = SetInelasticCorrection(
        sample.get('InelasticCorrection', None))

    # Warn about having absorption correction and multiple scat correction set
    if sam_abs_corr and sam_ms_corr:
        log.warning(MS_AND_ABS_CORR_WARNING)

    # Compute the absorption correction on the sample if it was provided
    sam_abs_ws = ''
    con_abs_ws = ''
    if sam_abs_corr:
        msg = "Applying '{}' absorption correction to sample"
        log.notice(msg.format(sam_abs_corr["Type"]))
        sam_abs_ws, con_abs_ws = create_absorption_wksp(
            sam_scans, sam_abs_corr["Type"], sam_geo_dict, sam_mat_dict,
            sam_env_dict, **config)

    # Get vanadium corrections
    van_mass_density = van.get('MassDensity', van_mass_density)
    van_packing_fraction = van.get('PackingFraction', van_packing_fraction)
    van_abs_corr = van.get("AbsorptionCorrection", {"Type": None})
    van_ms_corr = van.get("MultipleScatteringCorrection", {"Type": None})
    van_inelastic_corr = SetInelasticCorrection(
        van.get('InelasticCorrection', None))

    # Warn about having absorption correction and multiple scat correction set
    if van_abs_corr["Type"] and van_ms_corr["Type"]:
        log.warning(MS_AND_ABS_CORR_WARNING)

    # Compute the absorption correction for the vanadium if provided
    van_abs_corr_ws = ''
    if van_abs_corr:
        msg = "Applying '{}' absorption correction to vanadium"
        log.notice(msg.format(van_abs_corr["Type"]))
        van_abs_corr_ws, van_con_ws = create_absorption_wksp(
            van_scans, van_abs_corr["Type"], van_geo_dict, van_mat_dict,
            **config)

    alignAndFocusArgs = dict()
    alignAndFocusArgs['CalFilename'] = config['Calibration']['Filename']
    # alignAndFocusArgs['GroupFilename'] don't use
    # alignAndFocusArgs['Params'] = "0.,0.02,40."
    alignAndFocusArgs['ResampleX'] = -6000
    alignAndFocusArgs['Dspacing'] = False
    alignAndFocusArgs['PreserveEvents'] = False
    alignAndFocusArgs['MaxChunkSize'] = 8
    alignAndFocusArgs['CacheDir'] = os.path.abspath(cache_dir)

    # Get any additional AlignAndFocusArgs from JSON input
    if "AlignAndFocusArgs" in config:
        otherArgs = config["AlignAndFocusArgs"]
        alignAndFocusArgs.update(otherArgs)

    # Setup grouping
    output_grouping = False
    grp_wksp = "wksp_output_group"

    if grouping:
        if 'Initial' in grouping:
            if grouping['Initial'] and not grouping['Initial'] == u'':
                alignAndFocusArgs['GroupFilename'] = grouping['Initial']
        if 'Output' in grouping:
            if grouping['Output'] and not grouping['Output'] == u'':
                output_grouping = True
                LoadDetectorsGroupingFile(InputFile=grouping['Output'],
                                          OutputWorkspace=grp_wksp)
    # If no output grouping specified, create it with Calibration Grouping
    if not output_grouping:
        LoadDiffCal(alignAndFocusArgs['CalFilename'],
                    InstrumentName=instr,
                    WorkspaceName=grp_wksp.replace('_group', ''),
                    MakeGroupingWorkspace=True,
                    MakeCalWorkspace=False,
                    MakeMaskWorkspace=False)

    # Setup the 6 bank method if no grouping specified
    if not grouping:
        CreateGroupingWorkspace(InstrumentName=instr,
                                GroupDetectorsBy='Group',
                                OutputWorkspace=grp_wksp)
        alignAndFocusArgs['GroupingWorkspace'] = grp_wksp

    # TODO take out the RecalculatePCharge in the future once tested
    # Load Sample
    print("#-----------------------------------#")
    print("# Sample")
    print("#-----------------------------------#")
    sam_wksp = load('sample', sam_scans, sam_geometry, sam_material,
                    sam_mass_density, sam_abs_ws, **alignAndFocusArgs)
    sample_title = "sample_and_container"
    save_banks(InputWorkspace=sam_wksp,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    sam_molecular_mass = mtd[sam_wksp].sample().getMaterial(
    ).relativeMolecularMass()
    natoms = getNumberAtoms(sam_packing_fraction,
                            sam_mass_density,
                            sam_molecular_mass,
                            Geometry=sam_geometry)

    # Load Sample Container
    print("#-----------------------------------#")
    print("# Sample Container")
    print("#-----------------------------------#")
    container = load('container',
                     container_scans,
                     absorption_wksp=con_abs_ws,
                     **alignAndFocusArgs)
    save_banks(InputWorkspace=container,
               Filename=nexus_filename,
               Title=container,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Load Sample Container Background

    if container_bg is not None:
        print("#-----------------------------------#")
        print("# Sample Container's Background")
        print("#-----------------------------------#")
        container_bg = load('container_background', container_bg,
                            **alignAndFocusArgs)
        save_banks(InputWorkspace=container_bg,
                   Filename=nexus_filename,
                   Title=container_bg,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # Load Vanadium

    print("#-----------------------------------#")
    print("# Vanadium")
    print("#-----------------------------------#")
    van_wksp = load('vanadium', van_scans, van_geometry, van_material,
                    van_mass_density, van_abs_corr_ws, **alignAndFocusArgs)
    vanadium_title = "vanadium_and_background"

    save_banks(InputWorkspace=van_wksp,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    van_material = mtd[van_wksp].sample().getMaterial()
    van_molecular_mass = van_material.relativeMolecularMass()
    nvan_atoms = getNumberAtoms(1.0,
                                van_mass_density,
                                van_molecular_mass,
                                Geometry=van_geometry)

    print("Sample natoms:", natoms)
    print("Vanadium natoms:", nvan_atoms)
    print("Vanadium natoms / Sample natoms:", nvan_atoms / natoms)

    # Load Vanadium Background
    van_bg = None
    if van_bg_scans is not None:
        print("#-----------------------------------#")
        print("# Vanadium Background")
        print("#-----------------------------------#")
        van_bg = load('vanadium_background', van_bg_scans, **alignAndFocusArgs)
        vanadium_bg_title = "vanadium_background"
        save_banks(InputWorkspace=van_bg,
                   Filename=nexus_filename,
                   Title=vanadium_bg_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # Load Instrument Characterizations
    if characterizations:
        PDDetermineCharacterizations(
            InputWorkspace=sam_wksp,
            Characterizations='characterizations',
            ReductionProperties='__snspowderreduction')
        propMan = PropertyManagerDataService.retrieve('__snspowderreduction')
        qmax = 2. * np.pi / propMan['d_min'].value
        qmin = 2. * np.pi / propMan['d_max'].value
        for a, b in zip(qmin, qmax):
            print('Qrange:', a, b)
        # TODO: Add when we apply Qmin, Qmax cropping
        # mask_info = generate_cropping_table(qmin, qmax)

    # STEP 1: Subtract Backgrounds

    sam_raw = 'sam_raw'
    CloneWorkspace(InputWorkspace=sam_wksp,
                   OutputWorkspace=sam_raw)  # for later

    container_raw = 'container_raw'
    CloneWorkspace(InputWorkspace=container,
                   OutputWorkspace=container_raw)  # for later

    if van_bg is not None:
        RebinToWorkspace(WorkspaceToRebin=van_bg,
                         WorkspaceToMatch=van_wksp,
                         OutputWorkspace=van_bg)
        Minus(LHSWorkspace=van_wksp,
              RHSWorkspace=van_bg,
              OutputWorkspace=van_wksp)

    RebinToWorkspace(WorkspaceToRebin=container,
                     WorkspaceToMatch=sam_wksp,
                     OutputWorkspace=container)
    Minus(LHSWorkspace=sam_wksp,
          RHSWorkspace=container,
          OutputWorkspace=sam_wksp)

    if container_bg is not None:
        RebinToWorkspace(WorkspaceToRebin=container_bg,
                         WorkspaceToMatch=container,
                         OutputWorkspace=container_bg)
        Minus(LHSWorkspace=container,
              RHSWorkspace=container_bg,
              OutputWorkspace=container)

    for wksp in [container, van_wksp, sam_wksp]:
        ConvertUnits(InputWorkspace=wksp,
                     OutputWorkspace=wksp,
                     Target="MomentumTransfer",
                     EMode="Elastic")
    container_title = "container_minus_back"
    vanadium_title = "vanadium_minus_back"
    sample_title = "sample_minus_back"
    save_banks(InputWorkspace=container,
               Filename=nexus_filename,
               Title=container_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)
    save_banks(InputWorkspace=van_wksp,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)
    save_banks(InputWorkspace=sam_wksp,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # STEP 2.0: Prepare vanadium as normalization calibrant

    # Multiple-Scattering and Absorption (Steps 2-4) for Vanadium

    van_corrected = 'van_corrected'
    ConvertUnits(InputWorkspace=van_wksp,
                 OutputWorkspace=van_corrected,
                 Target="Wavelength",
                 EMode="Elastic")

    if "Type" in van_abs_corr:
        if van_abs_corr['Type'] == 'Carpenter' \
                or van_ms_corr['Type'] == 'Carpenter':
            CarpenterSampleCorrection(
                InputWorkspace=van_corrected,
                OutputWorkspace=van_corrected,
                CylinderSampleRadius=van['Geometry']['Radius'])
        elif van_abs_corr['Type'] == 'Mayers' \
                or van_ms_corr['Type'] == 'Mayers':
            if van_ms_corr['Type'] == 'Mayers':
                MayersSampleCorrection(InputWorkspace=van_corrected,
                                       OutputWorkspace=van_corrected,
                                       MultipleScattering=True)
            else:
                MayersSampleCorrection(InputWorkspace=van_corrected,
                                       OutputWorkspace=van_corrected,
                                       MultipleScattering=False)
        else:
            print("NO VANADIUM absorption or multiple scattering!")
    else:
        CloneWorkspace(InputWorkspace=van_corrected,
                       OutputWorkspace=van_corrected)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')
    vanadium_title += "_ms_abs_corrected"
    save_banks(InputWorkspace=van_corrected,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)
    save_banks(InputWorkspace=van_corrected,
               Filename=nexus_filename,
               Title=vanadium_title + "_with_peaks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # TODO subtract self-scattering of vanadium (According to Eq. 7 of Howe,
    # McGreevey, and Howells, JPCM, 1989)

    # Smooth Vanadium (strip peaks plus smooth)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='dSpacing',
                 EMode='Elastic')

    # After StripVanadiumPeaks, the workspace goes from EventWorkspace ->
    # Workspace2D
    StripVanadiumPeaks(InputWorkspace=van_corrected,
                       OutputWorkspace=van_corrected,
                       BackgroundType='Quadratic')
    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')
    vanadium_title += '_peaks_stripped'
    save_banks(InputWorkspace=van_corrected,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='TOF',
                 EMode='Elastic')

    FFTSmooth(InputWorkspace=van_corrected,
              OutputWorkspace=van_corrected,
              Filter="Butterworth",
              Params='20,2',
              IgnoreXBins=True,
              AllSpectra=True)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')

    vanadium_title += '_smoothed'
    save_banks(InputWorkspace=van_corrected,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Inelastic correction
    if van_inelastic_corr['Type'] == "Placzek":
        van_scan = van['Runs'][0]
        van_incident_wksp = 'van_incident_wksp'
        van_inelastic_opts = van['InelasticCorrection']
        lambda_binning_fit = van_inelastic_opts['LambdaBinningForFit']
        lambda_binning_calc = van_inelastic_opts['LambdaBinningForCalc']
        print('van_scan:', van_scan)
        GetIncidentSpectrumFromMonitor(Filename=facility_file_format %
                                       (instr, van_scan),
                                       OutputWorkspace=van_incident_wksp)

        fit_type = van['InelasticCorrection']['FitSpectrumWith']
        FitIncidentSpectrum(InputWorkspace=van_incident_wksp,
                            OutputWorkspace=van_incident_wksp,
                            FitSpectrumWith=fit_type,
                            BinningForFit=lambda_binning_fit,
                            BinningForCalc=lambda_binning_calc,
                            PlotDiagnostics=False)

        van_placzek = 'van_placzek'

        SetSample(InputWorkspace=van_incident_wksp,
                  Material={
                      'ChemicalFormula': str(van_material),
                      'SampleMassDensity': str(van_mass_density)
                  })

        CalculatePlaczekSelfScattering(IncidentWorkspace=van_incident_wksp,
                                       ParentWorkspace=van_corrected,
                                       OutputWorkspace=van_placzek,
                                       L1=19.5,
                                       L2=alignAndFocusArgs['L2'],
                                       Polar=alignAndFocusArgs['Polar'])

        ConvertToHistogram(InputWorkspace=van_placzek,
                           OutputWorkspace=van_placzek)

        # Save before rebin in Q
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

            Rebin(InputWorkspace=wksp,
                  OutputWorkspace=wksp,
                  Params=binning,
                  PreserveEvents=True)

        save_banks(InputWorkspace=van_placzek,
                   Filename=nexus_filename,
                   Title="vanadium_placzek",
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

        # Rebin in Wavelength
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='Wavelength',
                         EMode='Elastic')
            Rebin(InputWorkspace=wksp,
                  OutputWorkspace=wksp,
                  Params=lambda_binning_calc,
                  PreserveEvents=True)

        # Save after rebin in Q
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

        # Subtract correction in Wavelength
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='Wavelength',
                         EMode='Elastic')
            if not mtd[wksp].isDistribution():
                ConvertToDistribution(wksp)

        Minus(LHSWorkspace=van_corrected,
              RHSWorkspace=van_placzek,
              OutputWorkspace=van_corrected)

        # Save after subtraction
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

        vanadium_title += '_placzek_corrected'
        save_banks(InputWorkspace=van_corrected,
                   Filename=nexus_filename,
                   Title=vanadium_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')

    SetUncertainties(InputWorkspace=van_corrected,
                     OutputWorkspace=van_corrected,
                     SetError='zero')

    # STEP 2.1: Normalize by Vanadium

    wksp_list = [sam_wksp, sam_raw, van_corrected]
    for name in wksp_list:
        ConvertUnits(InputWorkspace=name,
                     OutputWorkspace=name,
                     Target='MomentumTransfer',
                     EMode='Elastic',
                     ConvertFromPointData=False)

        Rebin(InputWorkspace=name,
              OutputWorkspace=name,
              Params=binning,
              PreserveEvents=True)

    # Save the sample - back / normalized
    Divide(LHSWorkspace=sam_wksp,
           RHSWorkspace=van_corrected,
           OutputWorkspace=sam_wksp)

    sample_title += "_normalized"
    save_banks(InputWorkspace=sam_wksp,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Save the sample / normalized (ie no background subtraction)
    Divide(LHSWorkspace=sam_raw,
           RHSWorkspace=van_corrected,
           OutputWorkspace=sam_raw)

    save_banks(InputWorkspace=sam_raw,
               Filename=nexus_filename,
               Title="sample_normalized",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Output an initial I(Q) for sample
    iq_filename = title + '_initial_iofq_banks.nxs'
    save_banks(InputWorkspace=sam_wksp,
               Filename=iq_filename,
               Title="IQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    wksp_list = [container, container_raw, van_corrected]
    if container_bg is not None:
        wksp_list.append(container_bg)
    if van_bg is not None:
        wksp_list.append(van_bg)

    for name in wksp_list:
        ConvertUnits(InputWorkspace=name,
                     OutputWorkspace=name,
                     Target='MomentumTransfer',
                     EMode='Elastic',
                     ConvertFromPointData=False)

        Rebin(InputWorkspace=name,
              OutputWorkspace=name,
              Params=binning,
              PreserveEvents=True)

    # Save the container - container_background / normalized
    Divide(LHSWorkspace=container,
           RHSWorkspace=van_corrected,
           OutputWorkspace=container)

    container_title += '_normalized'
    save_banks(InputWorkspace=container,
               Filename=nexus_filename,
               Title=container_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Save the container / normalized (ie no background subtraction)
    Divide(LHSWorkspace=container_raw,
           RHSWorkspace=van_corrected,
           OutputWorkspace=container_raw)

    save_banks(InputWorkspace=container_raw,
               Filename=nexus_filename,
               Title="container_normalized",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Save the container_background / normalized
    if container_bg is not None:
        Divide(LHSWorkspace=container_bg,
               RHSWorkspace=van_corrected,
               OutputWorkspace=container_bg)

        container_bg_title = "container_back_normalized"
        save_banks(InputWorkspace=container_bg,
                   Filename=nexus_filename,
                   Title=container_bg_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # Save the vanadium_background / normalized
    if van_bg is not None:
        Divide(LHSWorkspace=van_bg,
               RHSWorkspace=van_corrected,
               OutputWorkspace=van_bg)

        vanadium_bg_title += "_normalized"
        save_banks(InputWorkspace=van_bg,
                   Filename=nexus_filename,
                   Title=vanadium_bg_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # STEP 3 & 4: Subtract multiple scattering and apply absorption correction

    ConvertUnits(InputWorkspace=sam_wksp,
                 OutputWorkspace=sam_wksp,
                 Target="Wavelength",
                 EMode="Elastic")

    sam_corrected = 'sam_corrected'
    if sam_abs_corr and sam_ms_corr:
        if sam_abs_corr['Type'] == 'Carpenter' \
                or sam_ms_corr['Type'] == 'Carpenter':
            CarpenterSampleCorrection(
                InputWorkspace=sam_wksp,
                OutputWorkspace=sam_corrected,
                CylinderSampleRadius=sample['Geometry']['Radius'])
        elif sam_abs_corr['Type'] == 'Mayers' \
                or sam_ms_corr['Type'] == 'Mayers':
            if sam_ms_corr['Type'] == 'Mayers':
                MayersSampleCorrection(InputWorkspace=sam_wksp,
                                       OutputWorkspace=sam_corrected,
                                       MultipleScattering=True)
            else:
                MayersSampleCorrection(InputWorkspace=sam_wksp,
                                       OutputWorkspace=sam_corrected,
                                       MultipleScattering=False)
        else:
            print("NO SAMPLE absorption or multiple scattering!")
            CloneWorkspace(InputWorkspace=sam_wksp,
                           OutputWorkspace=sam_corrected)

        ConvertUnits(InputWorkspace=sam_corrected,
                     OutputWorkspace=sam_corrected,
                     Target='MomentumTransfer',
                     EMode='Elastic')

        sample_title += "_ms_abs_corrected"
        save_banks(InputWorkspace=sam_corrected,
                   Filename=nexus_filename,
                   Title=sample_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)
    else:
        CloneWorkspace(InputWorkspace=sam_wksp, OutputWorkspace=sam_corrected)

    # STEP 5: Divide by number of atoms in sample

    mtd[sam_corrected] = (nvan_atoms / natoms) * mtd[sam_corrected]
    ConvertUnits(InputWorkspace=sam_corrected,
                 OutputWorkspace=sam_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')

    sample_title += "_norm_by_atoms"
    save_banks(InputWorkspace=sam_corrected,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # STEP 6: Divide by total scattering length squared = total scattering
    # cross-section over 4 * pi
    van_material = mtd[van_corrected].sample().getMaterial()
    sigma_v = van_material.totalScatterXSection()
    prefactor = (sigma_v / (4. * np.pi))
    msg = "Total scattering cross-section of Vanadium:{} sigma_v / 4*pi: {}"
    print(msg.format(sigma_v, prefactor))

    mtd[sam_corrected] = prefactor * mtd[sam_corrected]
    sample_title += '_multiply_by_vanSelfScat'
    save_banks(InputWorkspace=sam_corrected,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # STEP 7: Inelastic correction
    ConvertUnits(InputWorkspace=sam_corrected,
                 OutputWorkspace=sam_corrected,
                 Target='Wavelength',
                 EMode='Elastic')

    if sam_inelastic_corr['Type'] == "Placzek":
        if sam_material is None:
            error = "For Placzek correction, must specifiy a sample material."
            raise Exception(error)
        for sam_scan in sample['Runs']:
            sam_incident_wksp = 'sam_incident_wksp'
            sam_inelastic_opts = sample['InelasticCorrection']
            lambda_binning_fit = sam_inelastic_opts['LambdaBinningForFit']
            lambda_binning_calc = sam_inelastic_opts['LambdaBinningForCalc']
            GetIncidentSpectrumFromMonitor(Filename=facility_file_format %
                                           (instr, sam_scan),
                                           OutputWorkspace=sam_incident_wksp)

            fit_type = sample['InelasticCorrection']['FitSpectrumWith']
            FitIncidentSpectrum(InputWorkspace=sam_incident_wksp,
                                OutputWorkspace=sam_incident_wksp,
                                FitSpectrumWith=fit_type,
                                BinningForFit=lambda_binning_fit,
                                BinningForCalc=lambda_binning_calc)

            sam_placzek = 'sam_placzek'
            SetSample(InputWorkspace=sam_incident_wksp,
                      Material={
                          'ChemicalFormula': str(sam_material),
                          'SampleMassDensity': str(sam_mass_density)
                      })
            CalculatePlaczekSelfScattering(IncidentWorkspace=sam_incident_wksp,
                                           ParentWorkspace=sam_corrected,
                                           OutputWorkspace=sam_placzek,
                                           L1=19.5,
                                           L2=alignAndFocusArgs['L2'],
                                           Polar=alignAndFocusArgs['Polar'])

            ConvertToHistogram(InputWorkspace=sam_placzek,
                               OutputWorkspace=sam_placzek)

        # Save before rebin in Q
        for wksp in [sam_placzek, sam_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

            Rebin(InputWorkspace=wksp,
                  OutputWorkspace=wksp,
                  Params=binning,
                  PreserveEvents=True)

        save_banks(InputWorkspace=sam_placzek,
                   Filename=nexus_filename,
                   Title="sample_placzek",
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

        # Save after rebin in Q
        for wksp in [sam_placzek, sam_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

        Minus(LHSWorkspace=sam_corrected,
              RHSWorkspace=sam_placzek,
              OutputWorkspace=sam_corrected)

        # Save after subtraction
        for wksp in [sam_placzek, sam_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

        sample_title += '_placzek_corrected'
        save_banks(InputWorkspace=sam_corrected,
                   Filename=nexus_filename,
                   Title=sample_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # STEP 7: Output spectrum

    # TODO Since we already went from Event -> 2D workspace, can't use this
    # anymore
    print('sam:', mtd[sam_corrected].id())
    print('van:', mtd[van_corrected].id())
    if alignAndFocusArgs['PreserveEvents']:
        CompressEvents(InputWorkspace=sam_corrected,
                       OutputWorkspace=sam_corrected)

    # F(Q) bank-by-bank Section
    fq_banks_wksp = "FQ_banks_wksp"
    CloneWorkspace(InputWorkspace=sam_corrected, OutputWorkspace=fq_banks_wksp)
    # TODO: Add the following when implemented - FQ_banks = 'FQ_banks'

    # S(Q) bank-by-bank Section
    material = mtd[sam_corrected].sample().getMaterial()
    if material.name() is None or len(material.name().strip()) == 0:
        raise RuntimeError('Sample material was not set')
    bcoh_avg_sqrd = material.cohScatterLength() * material.cohScatterLength()
    btot_sqrd_avg = material.totalScatterLengthSqrd()
    laue_monotonic_diffuse_scat = btot_sqrd_avg / bcoh_avg_sqrd
    sq_banks_wksp = 'SQ_banks_wksp'
    CloneWorkspace(InputWorkspace=sam_corrected, OutputWorkspace=sq_banks_wksp)

    # TODO: Add the following when implemented
    '''
    SQ_banks = (1. / bcoh_avg_sqrd) * \
        mtd[sq_banks_wksp] - laue_monotonic_diffuse_scat + 1.
    '''

    # Save S(Q) and F(Q) to diagnostics NeXus file
    save_banks(InputWorkspace=fq_banks_wksp,
               Filename=nexus_filename,
               Title="FQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    save_banks(InputWorkspace=sq_banks_wksp,
               Filename=nexus_filename,
               Title="SQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Output a main S(Q) and F(Q) file
    fq_filename = title + '_fofq_banks_corrected.nxs'
    save_banks(InputWorkspace=fq_banks_wksp,
               Filename=fq_filename,
               Title="FQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    sq_filename = title + '_sofq_banks_corrected.nxs'
    save_banks(InputWorkspace=sq_banks_wksp,
               Filename=sq_filename,
               Title="SQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Print log information
    print("<b>^2:", bcoh_avg_sqrd)
    print("<b^2>:", btot_sqrd_avg)
    print("Laue term:", laue_monotonic_diffuse_scat)
    print("sample total xsection:",
          mtd[sam_corrected].sample().getMaterial().totalScatterXSection())
    print("vanadium total xsection:",
          mtd[van_corrected].sample().getMaterial().totalScatterXSection())

    # Output Bragg Diffraction
    ConvertUnits(InputWorkspace=sam_corrected,
                 OutputWorkspace=sam_corrected,
                 Target="TOF",
                 EMode="Elastic")

    ConvertToHistogram(InputWorkspace=sam_corrected,
                       OutputWorkspace=sam_corrected)

    xmin, xmax = get_each_spectra_xmin_xmax(mtd[sam_corrected])

    CropWorkspaceRagged(InputWorkspace=sam_corrected,
                        OutputWorkspace=sam_corrected,
                        Xmin=xmin,
                        Xmax=xmax)

    xmin_rebin = min(xmin)
    xmax_rebin = max(xmax)
    tof_binning = "{xmin},-0.01,{xmax}".format(xmin=xmin_rebin,
                                               xmax=xmax_rebin)

    Rebin(InputWorkspace=sam_corrected,
          OutputWorkspace=sam_corrected,
          Params=tof_binning)

    SaveGSS(InputWorkspace=sam_corrected,
            Filename=os.path.join(os.path.abspath(OutputDir), title + ".gsa"),
            SplitFiles=False,
            Append=False,
            MultiplyByBinWidth=True,
            Format="SLOG",
            ExtendedHeader=True)

    return mtd[sam_corrected]
示例#4
0
    def save(self,
             diff_ws_name,
             run_date_time,
             gsas_file_name,
             ipts_number,
             run_number,
             gsas_param_file_name,
             align_vdrive_bin,
             van_ws_name,
             is_chopped_run,
             write_to_file=True):
        """
        Save a workspace to a GSAS file or a string
        :param diff_ws_name: diffraction data workspace
        :param run_date_time: date and time of the run
        :param gsas_file_name: output file name. None as not output
        :param ipts_number:
        :param run_number: if not None, run number
        :param gsas_param_file_name:
        :param align_vdrive_bin: Flag to align with VDRIVE bin edges/boundaries
        :param van_ws_name: name of vanadium workspaces loaded from GSAS (replacing vanadium_gsas_file)
        :param is_chopped_run: Flag such that the input workspaces is from an event-sliced workspace
        :param write_to_file: flag to write the text buffer to file
        :return: string as the file content
        """
        diff_ws = mantid_helper.retrieve_workspace(diff_ws_name)

        # set the unit to TOF
        if diff_ws.getAxis(0).getUnit() != 'TOF':
            ConvertUnits(InputWorkspace=diff_ws_name,
                         OutputWorkspace=diff_ws_name,
                         Target='TOF',
                         EMode='Elastic')
            diff_ws = mantid_helper.retrieve_workspace(diff_ws_name)

        # convert to Histogram Data
        if not diff_ws.isHistogramData():
            ConvertToHistogram(diff_ws_name, diff_ws_name)

        # get the binning parameters
        if align_vdrive_bin:
            bin_params_set = self._get_tof_bin_params(
                self._get_vulcan_phase(run_date_time),
                diff_ws.getNumberHistograms())
        else:
            # a binning parameter set for doing nothing
            bin_params_set = [(range(1,
                                     diff_ws.getNumberHistograms() + 1), None,
                               None)]

        # check for vanadium GSAS file name
        if van_ws_name is not None:
            # check whether a workspace exists
            if not mantid_helper.workspace_does_exist(van_ws_name):
                raise RuntimeError(
                    'Vanadium workspace {} does not exist in Mantid ADS'.
                    format(van_ws_name))
            van_ws = mantid_helper.retrieve_workspace(van_ws_name)

            # check number of histograms
            if mantid_helper.get_number_spectra(
                    van_ws) != mantid_helper.get_number_spectra(diff_ws):
                raise RuntimeError(
                    'Numbers of histograms between vanadium spectra and output GSAS are different'
                )
        else:
            van_ws = None
        # END-IF

        # rebin and then write output
        gsas_bank_buffer_dict = dict()
        num_bank_sets = len(bin_params_set)

        for bank_set_index in range(num_bank_sets):
            # get value
            bank_id_list, bin_params, tof_vector = bin_params_set[
                bank_set_index]

            # Rebin to these banks' parameters (output = Histogram)
            if bin_params is not None:
                Rebin(InputWorkspace=diff_ws_name,
                      OutputWorkspace=diff_ws_name,
                      Params=bin_params,
                      PreserveEvents=True)

            # Create output
            for bank_id in bank_id_list:
                # check vanadium bin edges
                if van_ws is not None:
                    # check whether the bins are same between GSAS workspace and vanadium workspace
                    unmatched, reason = self._compare_workspaces_dimension(
                        van_ws, bank_id, tof_vector)
                    if unmatched:
                        raise RuntimeError(
                            'Vanadium GSAS workspace {} does not match workspace {}: {}'
                            ''.format(van_ws_name, diff_ws_name, reason))
                # END-IF

                # write GSAS head considering vanadium
                gsas_section_i = self._write_slog_bank_gsas(
                    diff_ws_name, bank_id, tof_vector, van_ws)
                gsas_bank_buffer_dict[bank_id] = gsas_section_i
        # END-FOR

        # header
        diff_ws = mantid_helper.retrieve_workspace(diff_ws_name)
        gsas_header = self._generate_vulcan_gda_header(diff_ws, gsas_file_name,
                                                       ipts_number, run_number,
                                                       gsas_param_file_name,
                                                       is_chopped_run)

        # form to a big string
        gsas_buffer = gsas_header
        for bank_id in sorted(gsas_bank_buffer_dict.keys()):
            gsas_buffer += gsas_bank_buffer_dict[bank_id]

        # write to HDD
        if write_to_file:
            datatypeutility.check_file_name(gsas_file_name,
                                            check_exist=False,
                                            check_writable=True,
                                            is_dir=False,
                                            note='Output GSAS file')
            g_file = open(gsas_file_name, 'w')
            g_file.write(gsas_buffer)
            g_file.close()
        else:
            pass

        return gsas_buffer
示例#5
0
    def save_2theta_group(self, diff_ws_name, output_dir, run_date_time,
                          ipts_number, run_number, gsas_param_file_name,
                          van_ws_name, two_theta_array, tth_pixels_num_array,
                          target_bank_id, scale_factor):
        """ Save workspace from 2theta grouped
        :param diff_ws_name:
        :param output_dir:
        :param run_date_time:
        :param ipts_number:
        :param run_number:
        :param gsas_param_file_name:
        :param van_ws_name:
        :param two_theta_array:
        :param tth_pixels_num_array: array of integers for number of pixels of 2theta range for normalization
        :param target_bank_id:
        :return:
        """
        # process input workspaces
        diff_ws = mantid_helper.retrieve_workspace(diff_ws_name)

        # set the unit to TOF
        if diff_ws.getAxis(0).getUnit() != 'TOF':
            ConvertUnits(InputWorkspace=diff_ws_name,
                         OutputWorkspace=diff_ws_name,
                         Target='TOF',
                         EMode='Elastic')
            diff_ws = mantid_helper.retrieve_workspace(diff_ws_name)

        # convert to Histogram Data
        if not diff_ws.isHistogramData():
            ConvertToHistogram(diff_ws_name, diff_ws_name)

        # vanadium
        if isinstance(van_ws_name, str) and len(van_ws_name) > 0:
            van_ws = mantid_helper.retrieve_workspace(van_ws_name)
        else:
            van_ws = None

        # get the binning parameters
        bin_params_set = self._get_tof_bin_params(
            self._get_vulcan_phase(run_date_time), 3)

        # check output directory
        if not os.path.exists(output_dir):
            os.mkdir(output_dir)

        # For each 2theta bin / spectrum, create a GSAS file
        for tth_id in range(diff_ws.getNumberHistograms()):
            # rebin and then write output
            gsas_bank_buffer_dict = dict()
            num_bank_sets = len(bin_params_set)

            for bank_set_index in range(num_bank_sets):
                # get value
                bank_id_list, bin_params, tof_vector = bin_params_set[
                    bank_set_index]

                # Rebin to these banks' parameters (output = Histogram)
                if bin_params is not None:
                    Rebin(InputWorkspace=diff_ws_name,
                          OutputWorkspace=diff_ws_name,
                          Params=bin_params,
                          PreserveEvents=True)

                # Create output
                for bank_id_i in bank_id_list:
                    # check vanadium bin edges
                    if van_ws is not None:
                        # check whether the bins are same between GSAS workspace and vanadium workspace
                        unmatched, reason = self._compare_workspaces_dimension(
                            van_ws, bank_id_i, tof_vector)
                        if unmatched:
                            raise RuntimeError(
                                'Vanadium GSAS workspace {} does not match workspace {}: {}'
                                ''.format(van_ws_name, diff_ws_name, reason))
                    # END-IF

                    # write GSAS head considering vanadium
                    if bank_id_i == target_bank_id:
                        # target bank to write: east/west
                        source_bank_id = tth_id + 1
                        norm_factor = tth_pixels_num_array[tth_id]
                    else:
                        source_bank_id = bank_id_i
                        norm_factor = -1

                    gsas_section_i = self._write_slog_bank_gsas(
                        diff_ws_name,
                        source_bank_id,
                        tof_vector,
                        van_ws,
                        gsas_bank_id=bank_id_i,
                        norm_factor=norm_factor,
                        scale_factor=scale_factor)
                    gsas_bank_buffer_dict[bank_id_i] = gsas_section_i
                    print('[DB...BAT] Write bank {} to GSAS bank {}'.format(
                        source_bank_id, bank_id_i))
            # END-FOR

            # header
            diff_ws = mantid_helper.retrieve_workspace(diff_ws_name)
            gsas_file_name = os.path.join(output_dir,
                                          '{}.gda'.format(tth_id + 1))
            extra_info = '2theta {} to {}'.format(
                two_theta_array[tth_id], two_theta_array[[tth_id + 1]])
            gsas_header = self._generate_vulcan_gda_header(
                diff_ws, gsas_file_name, ipts_number, run_number,
                gsas_param_file_name, True, extra_info)

            # form to a big string
            gsas_buffer = gsas_header
            for bank_id in sorted(gsas_bank_buffer_dict.keys()):
                gsas_buffer += gsas_bank_buffer_dict[bank_id]

            # write to HDD
            datatypeutility.check_file_name(gsas_file_name,
                                            check_exist=False,
                                            check_writable=True,
                                            is_dir=False,
                                            note='Output GSAS file')
            g_file = open(gsas_file_name, 'w')
            g_file.write(gsas_buffer)
            g_file.close()

        # END-FOR (tth_id)

        return