def train_response_plot(expt_list, name=None, summary_plots=[None, None], color=None):
    ind_base_subtract = []
    rec_base_subtract = []
    train_plots = pg.plot()
    train_plots.setLabels(left=('Vm', 'V'))
    tau =15e-3
    lp = 1000
    for expt in expt_list:
        for pre, post in expt.connections:
            if expt.cells[pre].cre_type == cre_type[0] and expt.cells[post].cre_type == cre_type[1]:
                print ('Processing experiment: %s' % (expt.nwb_file))
                ind = []
                rec = []
                analyzer = DynamicsAnalyzer(expt, pre, post)
                train_responses = analyzer.train_responses
                artifact = analyzer.cross_talk()
                if artifact > 0.03e-3:
                    continue
                for i, stim_params in enumerate(train_responses.keys()):
                     rec_t = int(np.round(stim_params[1] * 1e3, -1))
                     if stim_params[0] == 50 and rec_t == 250:
                        pulse_offsets = analyzer.pulse_offsets
                        if len(train_responses[stim_params][0]) != 0:
                            ind_group = train_responses[stim_params][0]
                            rec_group = train_responses[stim_params][1]
                            for j in range(len(ind_group)):
                                ind.append(ind_group.responses[j])
                                rec.append(rec_group.responses[j])
                if len(ind) > 5:
                    ind_avg = TraceList(ind).mean()
                    rec_avg = TraceList(rec).mean()
                    rec_avg.t0 = 0.3
                    base = float_mode(ind_avg.data[:int(10e-3 / ind_avg.dt)])
                    ind_base_subtract.append(ind_avg.copy(data=ind_avg.data - base))
                    rec_base_subtract.append(rec_avg.copy(data=rec_avg.data - base))
                    train_plots.plot(ind_avg.time_values, ind_avg.data - base)
                    train_plots.plot(rec_avg.time_values, rec_avg.data - base)
                    app.processEvents()
    if len(ind_base_subtract) != 0:
        print (name + ' n = %d' % len(ind_base_subtract))
        ind_grand_mean = TraceList(ind_base_subtract).mean()
        rec_grand_mean = TraceList(rec_base_subtract).mean()
        ind_grand_mean_dec = bessel_filter(exp_deconvolve(ind_grand_mean, tau), lp)
        train_plots.addLegend()
        train_plots.plot(ind_grand_mean.time_values, ind_grand_mean.data, pen={'color': 'g', 'width': 3}, name=name)
        train_plots.plot(rec_grand_mean.time_values, rec_grand_mean.data, pen={'color': 'g', 'width': 3}, name=name)
        #train_plots.plot(ind_grand_mean_dec.time_values, ind_grand_mean_dec.data, pen={'color': 'g', 'dash': [1,5,3,2]})
        train_amps = train_amp([ind_base_subtract, rec_base_subtract], pulse_offsets, '+')
        if ind_grand_mean is not None:
            train_plots = summary_plot_train(ind_grand_mean, plot=summary_plots[0], color=color,
                                             name=(legend + ' 50 Hz induction'))
            train_plots = summary_plot_train(rec_grand_mean, plot=summary_plots[0], color=color)
            train_plots2 = summary_plot_train(ind_grand_mean_dec, plot=summary_plots[1], color=color,
                                              name=(legend + ' 50 Hz induction'))
            return train_plots, train_plots2, train_amps
    else:
        print ("No Traces")
        return None
def train_response_plot(expt_list, name=None, summary_plots=[None, None], color=None):
    grand_train = [[], []]
    train_plots = pg.plot()
    train_plots.setLabels(left=('Vm', 'V'))
    tau =15e-3
    lp = 1000
    for expt in expt_list:
        for pre, post in expt.connections:
            if expt.cells[pre].cre_type == cre_type[0] and expt.cells[post].cre_type == cre_type[1]:
                print ('Processing experiment: %s' % (expt.nwb_file))

                train_responses, artifact = get_response(expt, pre, post, analysis_type='train')
                if artifact > 0.03e-3:
                    continue

                train_filter = response_filter(train_responses['responses'], freq_range=[50, 50], train=0, delta_t=250)
                pulse_offsets = response_filter(train_responses['pulse_offsets'], freq_range=[50, 50], train=0, delta_t=250)

                if len(train_filter[0]) > 5:
                    ind_avg = TraceList(train_filter[0]).mean()
                    rec_avg = TraceList(train_filter[1]).mean()
                    rec_avg.t0 = 0.3
                    grand_train[0].append(ind_avg)
                    grand_train[1].append(rec_avg)
                    train_plots.plot(ind_avg.time_values, ind_avg.data)
                    train_plots.plot(rec_avg.time_values, rec_avg.data)
                    app.processEvents()
    if len(grand_train[0]) != 0:
        print (name + ' n = %d' % len(grand_train[0]))
        ind_grand_mean = TraceList(grand_train[0]).mean()
        rec_grand_mean = TraceList(grand_train[1]).mean()
        ind_grand_mean_dec = bessel_filter(exp_deconvolve(ind_grand_mean, tau), lp)
        train_plots.addLegend()
        train_plots.plot(ind_grand_mean.time_values, ind_grand_mean.data, pen={'color': 'g', 'width': 3}, name=name)
        train_plots.plot(rec_grand_mean.time_values, rec_grand_mean.data, pen={'color': 'g', 'width': 3}, name=name)
        train_amps = train_amp([grand_train[0], grand_train[1]], pulse_offsets, '+')
        if ind_grand_mean is not None:
            train_plots = summary_plot_train(ind_grand_mean, plot=summary_plots[0], color=color,
                                             name=(legend + ' 50 Hz induction'))
            train_plots = summary_plot_train(rec_grand_mean, plot=summary_plots[0], color=color)
            train_plots2 = summary_plot_train(ind_grand_mean_dec, plot=summary_plots[1], color=color,
                                              name=(legend + ' 50 Hz induction'))
            return train_plots, train_plots2, train_amps
    else:
        print ("No Traces")
        return None
def train_response_plot(expt_list,
                        name=None,
                        summary_plots=[None, None],
                        color=None):
    grand_train = [[], []]
    train_plots = pg.plot()
    train_plots.setLabels(left=('Vm', 'V'))
    tau = 15e-3
    lp = 1000
    for expt in expt_list:
        for pre, post in expt.connections:
            if expt.cells[pre].cre_type == cre_type[0] and expt.cells[
                    post].cre_type == cre_type[1]:
                print('Processing experiment: %s' % (expt.nwb_file))

                train_responses, artifact = get_response(expt,
                                                         pre,
                                                         post,
                                                         analysis_type='train')
                if artifact > 0.03e-3:
                    continue

                train_filter = response_filter(train_responses['responses'],
                                               freq_range=[50, 50],
                                               train=0,
                                               delta_t=250)
                pulse_offsets = response_filter(
                    train_responses['pulse_offsets'],
                    freq_range=[50, 50],
                    train=0,
                    delta_t=250)

                if len(train_filter[0]) > 5:
                    ind_avg = TraceList(train_filter[0]).mean()
                    rec_avg = TraceList(train_filter[1]).mean()
                    rec_avg.t0 = 0.3
                    grand_train[0].append(ind_avg)
                    grand_train[1].append(rec_avg)
                    train_plots.plot(ind_avg.time_values, ind_avg.data)
                    train_plots.plot(rec_avg.time_values, rec_avg.data)
                    app.processEvents()
    if len(grand_train[0]) != 0:
        print(name + ' n = %d' % len(grand_train[0]))
        ind_grand_mean = TraceList(grand_train[0]).mean()
        rec_grand_mean = TraceList(grand_train[1]).mean()
        ind_grand_mean_dec = bessel_filter(exp_deconvolve(ind_grand_mean, tau),
                                           lp)
        train_plots.addLegend()
        train_plots.plot(ind_grand_mean.time_values,
                         ind_grand_mean.data,
                         pen={
                             'color': 'g',
                             'width': 3
                         },
                         name=name)
        train_plots.plot(rec_grand_mean.time_values,
                         rec_grand_mean.data,
                         pen={
                             'color': 'g',
                             'width': 3
                         },
                         name=name)
        train_amps = train_amp([grand_train[0], grand_train[1]], pulse_offsets,
                               '+')
        if ind_grand_mean is not None:
            train_plots = summary_plot_train(ind_grand_mean,
                                             plot=summary_plots[0],
                                             color=color,
                                             name=(legend +
                                                   ' 50 Hz induction'))
            train_plots = summary_plot_train(rec_grand_mean,
                                             plot=summary_plots[0],
                                             color=color)
            train_plots2 = summary_plot_train(ind_grand_mean_dec,
                                              plot=summary_plots[1],
                                              color=color,
                                              name=(legend +
                                                    ' 50 Hz induction'))
            return train_plots, train_plots2, train_amps
    else:
        print("No Traces")
        return None
示例#4
0
 p2 = trace_plot(grand_pulse_trace,
                 color=avg_color,
                 plot=p2,
                 x_range=[0, 27e-3],
                 name=('n = %d' % len(grand_pulse_response)))
 if len(grand_induction) > 0:
     for f, freq in enumerate(freqs):
         if freq in grand_induction:
             offset = offset_ind[freq]
             ind_pass_qc = train_qc(grand_induction[freq],
                                    offset,
                                    amp=amp_thresh,
                                    sign=sign)
             n = len(ind_pass_qc[0])
             if n > 0:
                 ind_amp = train_amp(ind_pass_qc, offset, sign)
                 grand_ind_amp = np.nanmean(ind_amp, 0)
                 ind_amp_sem = stats.sem(ind_amp)
                 if freq not in ind_index.keys():
                     ind_index[freq] = {}
                 if key not in ind_index[freq].keys():
                     ind_index[freq][key] = []
                 for n in range(ind_amp.shape[0]):
                     ind_index[freq][key].append(ind_amp[n, 7] /
                                                 ind_amp[n, 0])
                 if freq == 50:
                     grand_ind_trace = TSeriesList(
                         ind_pass_qc[0]).mean()
                     grand_rec_trace = TSeriesList(
                         ind_pass_qc[1]).mean()
                     for ind in ind_pass_qc[0]:
    for f, freq in enumerate(freqs):
        if freq not in induction_grand.keys():
            print("%d Hz not represented in data set for %s" % (freq, c_type))
            continue
        ind_offsets = pulse_offset_ind[freq]
        qc_plot.clear()
        ind_pass_qc = train_qc(induction_grand[freq],
                               ind_offsets,
                               amp=qc_params[1][c],
                               sign=qc_params[0],
                               plot=qc_plot)
        n_synapses = len(ind_pass_qc[0])
        if n_synapses > 0:
            induction_grand_trace = TraceList(ind_pass_qc[0]).mean()
            ind_rec_grand_trace = TraceList(ind_pass_qc[1]).mean()
            ind_amp = train_amp(ind_pass_qc, ind_offsets, '+')
            ind_amp_grand = np.nanmean(ind_amp, 0)

            if f == 0:
                ind_plot[f, c].setTitle(connection_types[c])
                type = pg.LabelItem('%s -> %s' % connection_types[c])
                type.setParentItem(summary_plot[c, 0])
                type.setPos(50, 0)
            if c == 0:
                label = pg.LabelItem('%d Hz Induction' % freq)
                label.setParentItem(ind_plot[f, c].vb)
                label.setPos(50, 0)
                summary_plot[c, 0].setTitle('Induction')
            ind_plot[f, c].addLegend()
            [
                ind_plot[f, c].plot(ind.time_values, ind.data, pen=trace_color)
                                                                      uid=(expt.uid, pre, post))
                recovery_grand, pulse_offset_rec = recovery_summary(train_response, rec_t, holding, thresh=sweep_threshold,
                                                                rec_dict=recovery_grand, offset_dict=pulse_offset_rec,
                                                                    uid=(expt.uid, pre, post))
    for f, freq in enumerate(freqs):
        if freq not in induction_grand.keys():
            print ("%d Hz not represented in data set for %s" % (freq, c_type))
            continue
        ind_offsets = pulse_offset_ind[freq]
        qc_plot.clear()
        ind_pass_qc = train_qc(induction_grand[freq], ind_offsets, amp=qc_params[1][c], sign=qc_params[0], plot=qc_plot)
        n_synapses = len(ind_pass_qc[0])
        if n_synapses > 0:
            induction_grand_trace = TraceList(ind_pass_qc[0]).mean()
            ind_rec_grand_trace = TraceList(ind_pass_qc[1]).mean()
            ind_amp = train_amp(ind_pass_qc, ind_offsets, '+')
            ind_amp_grand = np.nanmean(ind_amp, 0)

            if f == 0:
                ind_plot[f, c].setTitle(connection_types[c])
                type = pg.LabelItem('%s -> %s' % connection_types[c])
                type.setParentItem(summary_plot[c, 0])
                type.setPos(50, 0)
            if c == 0:
                label = pg.LabelItem('%d Hz Induction' % freq)
                label.setParentItem(ind_plot[f, c].vb)
                label.setPos(50, 0)
                summary_plot[c, 0].setTitle('Induction')
            ind_plot[f, c].addLegend()
            [ind_plot[f, c].plot(ind.time_values, ind.data, pen=trace_color) for ind in ind_pass_qc[0]]
            [ind_plot[f, c].plot(rec.time_values, rec.data, pen=trace_color) for rec in ind_pass_qc[1]]