dist_plot=None, color=color[0]) avg_est_age2, summary_plots = first_pulse_plot( expts, name=legend, summary_plot=summary_plots, color=color[1], scatter=1, features=True) if args.trains is True: summary_train, summary_dec, summary_amps = train_response_plot( expts, name=(legend + ' 50 Hz induction'), summary_plots=[summary_train, summary_dec], color=color[1]) write_cache(summary_amps, 'age_train_amps.pkl') ks = stats.ks_2samp(avg_est_age1['amp'], avg_est_age2['amp']) print('p = %f (KS test, Amplitude)' % ks.pvalue) ks = stats.ks_2samp(avg_est_age1['latency'], avg_est_age2['latency']) print('p = %f (KS test, Latency)' % ks.pvalue) ks = stats.ks_2samp(avg_est_age1['rise'], avg_est_age2['rise']) print('p = %f (KS test, Rise time)' % ks.pvalue) elif args.cre_type is None and (args.calcium is not None or args.age is not None): print( 'Error: in order to compare across conditions a single cre-type connection must be specified' ) else: dist_plots = None
rec_index[delta] = {} if key not in rec_index[delta].keys(): rec_index[delta][key] = [] for n in range(rec_amp.shape[0]): rec_index[delta][key].append(rec_amp[n, 8] / rec_amp[n, 0]) t_color = pg.hsvColor(hue, sat=float(t + 0.5) / len(t_rec), val=1) p5.plot(grand_rec_amp / grand_rec_amp[0], name=(' %d ms, n = %d' % (delta, n)), pen=t_color, symbol='t', symbolBrush=t_color, symbolPen=None) # rec_err = pg.ErrorBarItem(x=np.arange(12),y=np.array(grand_rec_amp / grand_rec_amp[0]), # height=np.array(rec_amp_sem), beam=0.3) # p5.addItem(rec_err) row += 1 # if sum(pulse_cache_change) > 0: # write_cache(pulse_response_cache, pulse_cache_file) # if sum(train_cache_change) > 0: # write_cache(train_response_cache, train_cache_file) feature_cache = {} feature_cache['Amplitudes'] = pulse_amp feature_cache['Induction'] = ind_index feature_cache['Recovery'] = rec_index write_cache(feature_cache, 'feature_cache_file.pkl')
rec_deconv = deconv_train(rec_pass_qc[:2]) rec_deconv_grand = TraceList(rec_deconv[0]).mean() rec_ind_deconv_grand = TraceList(rec_deconv[1]).mean() #log_rec_plt.plot(rec_deconv_grand.time_values, rec_deconv_grand.data, # pen={'color': color, 'width': 2}) rec_deconv_ind_grand2 = rec_ind_deconv_grand.copy(t0=delta + 0.2) #log_rec_plt.plot(rec_deconv_ind_grand2.time_values, rec_deconv_ind_grand2.data, # pen={'color': color, 'width': 2}) [deconv_rec_plot[t, c].plot(ind.time_values, ind.data, pen=trace_color) for ind in rec_deconv[0]] [deconv_rec_plot[t, c].plot(rec.time_values, rec.data, pen=trace_color) for rec in rec_deconv[1]] deconv_rec_plot[t, c].plot(rec_ind_deconv_grand.time_values, rec_ind_deconv_grand.data, pen={'color': color, 'width': 2}, name=("n = %d" % n_synapses)) deconv_rec_plot[t, c].plot(rec_deconv_grand.time_values, rec_deconv_grand.data, pen={'color': color, 'width': 2}) summary_plot[c, 1].setLabels(left=('Norm Amp', '')) summary_plot[c, 1].setLabels(bottom=('Pulse Number', '')) f_color = pg.hsvColor(hue=hue, sat=float(t+0.5) / len(rec_t), val=1) summary_plot[c, 1].plot(rec_amp_grand/rec_amp_grand[0], name=(' %d ms' % delta), pen=f_color, symbol=symbols[t], symbolBrush=f_color, symbolPen=None) if connection_types[c] not in rec_amp_summary.keys(): rec_amp_summary[connection_types[c]] = [] rec_uid[connection_types[c]] = [] rec_amp_summary[connection_types[c]].append([delta, rec_amp]) rec_uid[connection_types[c]].append([delta, rec_pass_qc[2]]) # if sum(cache_change) > 0: # write_cache(response_cache, cache_file) print ('Exporting train pulse amplitudes and experiment IDs for further analysis') write_cache([ind_amp_summary, rec_amp_summary], "train_amps_human.pkl") write_cache([ind_uid, rec_uid], "expt_ids_human.pkl")
name=("n = %d" % n_synapses)) deconv_rec_plot[t, c].plot(rec_deconv_grand.time_values, rec_deconv_grand.data, pen={ 'color': color, 'width': 2 }) summary_plot[c, 1].setLabels(left=('Norm Amp', '')) summary_plot[c, 1].setLabels(bottom=('Pulse Number', '')) f_color = pg.hsvColor(hue=hue, sat=float(t + 0.5) / len(rec_t), val=1) summary_plot[c, 1].plot(rec_amp_grand / rec_amp_grand[0], name=(' %d ms' % delta), pen=f_color, symbol=symbols[t], symbolBrush=f_color, symbolPen=None) if connection_types[c] not in rec_amp_summary.keys(): rec_amp_summary[connection_types[c]] = [] rec_uid[connection_types[c]] = [] rec_amp_summary[connection_types[c]].append([delta, rec_amp]) rec_uid[connection_types[c]].append([delta, rec_pass_qc[2]]) # if sum(cache_change) > 0: # write_cache(response_cache, cache_file) print( 'Exporting train pulse amplitudes and experiment IDs for further analysis') write_cache([ind_amp_summary, rec_amp_summary], "train_amps3.pkl") write_cache([ind_uid, rec_uid], "expt_ids3.pkl")
ages = args.age.split(',') expts, legend, dist_plots = get_expts(all_expts, cre_type, calcium='high', age=ages[0], start=args.start, stop=args.stop, dist_plot=None, color=color[0]) avg_est_age1, summary_plots = first_pulse_plot(expts, name=legend, summary_plot=None, color=color[0], scatter=0, features=True) if args.trains is True: summary_train, summary_dec = train_response_plot(expts, name=(legend + ' 50 Hz induction'), summary_plots=[None,None], color=color[0]) expts, legend, dist_plots = get_expts(all_expts, cre_type, calcium='high', age=ages[1], start=args.start, stop=args.stop, dist_plot=None, color=color[0]) avg_est_age2, summary_plots = first_pulse_plot(expts, name=legend, summary_plot=summary_plots, color=color[1], scatter=1, features=True) if args.trains is True: summary_train, summary_dec, summary_amps = train_response_plot(expts, name=(legend + ' 50 Hz induction'), summary_plots=[summary_train, summary_dec], color=color[1]) write_cache(summary_amps, 'age_train_amps.pkl') ks = stats.ks_2samp(avg_est_age1['amp'], avg_est_age2['amp']) print('p = %f (KS test, Amplitude)' % ks.pvalue) ks = stats.ks_2samp(avg_est_age1['latency'], avg_est_age2['latency']) print('p = %f (KS test, Latency)' % ks.pvalue) ks = stats.ks_2samp(avg_est_age1['rise'], avg_est_age2['rise']) print('p = %f (KS test, Rise time)' % ks.pvalue) elif args.cre_type is None and (args.calcium is not None or args.age is not None): print('Error: in order to compare across conditions a single cre-type connection must be specified') else: dist_plots = None summary_plot = None train_plots = None train_plots2 = None for i, type in enumerate(cre_types):