示例#1
0
def _trim_grid(ingrid):
    outgrid = Grid2D.copyFromGrid(ingrid)
    while np.isnan(outgrid._data).any():
        nrows, ncols = outgrid._data.shape
        top = outgrid._data[0, :]
        bottom = outgrid._data[-1, :]
        left = outgrid._data[:, 0]
        right = outgrid._data[:, -1]
        ftop = np.isnan(top).sum() / ncols
        fbottom = np.isnan(bottom).sum() / ncols
        fleft = np.isnan(left).sum() / nrows
        fright = np.isnan(right).sum() / nrows
        side = np.argmax([ftop, fbottom, fleft, fright])
        gdict = outgrid.getGeoDict().asDict()
        if side == 0:  # removing top row
            outgrid._data = outgrid._data[1:, :]
            gdict['ymax'] -= gdict['dy']
            gdict['ny'] -= 1
        elif side == 1:  # removing bottom row
            outgrid._data = outgrid._data[0:-1, :]
            gdict['ymin'] += gdict['dy']
            gdict['ny'] -= 1
        elif side == 2:  # removing left column
            outgrid._data = outgrid._data[:, 1:]
            gdict['xmin'] += gdict['dx']
            gdict['nx'] -= 1
        elif side == 3:  # removing right column
            outgrid._data = outgrid._data[:, 0:-1]
            gdict['xmax'] -= gdict['dx']
            gdict['nx'] -= 1
        geodict = GeoDict(gdict)
        outgrid = Grid2D(data=outgrid._data, geodict=geodict)

    return outgrid
示例#2
0
    def calcExposure(self, shakefile):
        """Calculate population exposure to shaking.

        Calculate population exposure to shaking, per country, multiplied by event-year per-capita GDP and 
        alpha correction factor.  Also multiply the internal population grid by GDP and 
        alpha.

        :param shakefile:
          Path to ShakeMap grid.xml file.
        :returns:
          Dictionary containing country code (ISO2) keys, and values of
          10 element arrays representing population exposure to MMI 1-10.
          Dictionary will contain an additional key 'Total', with value of exposure across all countries.
        """
        #create a copy of population grid to hold population * gdp * alpha
        expdict = super(EconExposure, self).calcExposure(shakefile)
        self._econpopgrid = Grid2D.copyFromGrid(self._popgrid)
        econdict = {}
        isodata = self._isogrid.getData()
        eventyear = self.getShakeGrid().getEventDict()['event_timestamp'].year
        total = np.zeros((10, ))
        for ccode, exparray in expdict.items():
            if ccode.find('Total') > -1:
                continue
            if ccode == 'UK':  #unknown
                continue
            lossmodel = self._emploss.getModel(ccode)
            gdp, outccode = self._gdp.getGDP(ccode, eventyear)
            isocode = self._country.getCountry(ccode)['ISON']
            alpha = lossmodel.alpha
            econarray = exparray * gdp * alpha
            cidx = (isodata == isocode)
            #multiply the population grid by GDP and alpha, so that when the loss model
            #queries the grid later, those calculations don't have to be re-done.
            self._econpopgrid._data[
                cidx] = self._econpopgrid._data[cidx] * gdp * alpha
            econdict[ccode] = econarray
            total += econarray

        econdict['TotalEconomicExposure'] = total
        return econdict