def map_self(self): """ Get's mapping from Mapper.py using Genotype of Herd member """ self.phenotype, self.genotype_int, self.nodes, \ self.invalid, self.max_depth, self.used_codons = mp.mapper(self)
def process(options, pstat, OUT): ## process (options,pstat,OUT) - function # Starts processing as specified in pstat['tbd'] and # according the request list given bey the options # # Parameters: # ----------- # 1. options (OptionsParser object) # 2. pstat (process status dict) # # set list of request lsits for single or multi mode: mode = None procOptions = [ 'community', 'source', 'verb', 'mdprefix', 'mdsubset', 'target_mdschema' ] if (options.source): mode = 'single' mandParams = ['community', 'verb', 'mdprefix'] # mandatory processing params for param in mandParams: if not getattr(options, param): logger.critical( "Processing parameter %s is required in single mode" % param) sys.exit(-1) reqlist = [[ options.community, options.source, options.verb, options.mdprefix, options.mdsubset, options.ckan_check, options.handle_check, options.target_mdschema ]] elif (options.list): mode = 'multi' logger.debug(' |- Joblist: \t%s' % options.list) reqlist = parse_list_file(options) logger.debug(' |- Requestlist: \t%s' % reqlist) ## check job request (processing) options logger.debug('|- Command line options') for opt in procOptions: if hasattr(options, opt): logger.debug(' |- %s:\t%s' % (opt.upper(), getattr(options, opt))) ## HARVESTING mode: if (pstat['status']['h'] == 'tbd'): logger.info('\n|- Harvesting started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) HV = Harvester(OUT, pstat, options.outdir, options.fromdate) process_harvest(HV, reqlist) ## MAPPINING - Mode: if (pstat['status']['m'] == 'tbd'): logger.info('\n|- Mapping started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) MP = Mapper(OUT, options.outdir, options.fromdate) process_map(MP, reqlist) ## VALIDATING - Mode: if (pstat['status']['v'] == 'tbd'): logger.info(' |- Validating started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) MP = Mapper(OUT, options.outdir, options.fromdate) process_validate(MP, reqlist) ## OAI-CONVERTING - Mode: if (pstat['status']['o'] == 'tbd'): logger.info('\n|- OAI-Converting started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) MP = Mapper(OUT, options.outdir, options.fromdate) process_oaiconvert(MP, reqlist) ## UPLOADING - Mode: if (pstat['status']['u'] == 'tbd'): logger.info('\n|- Uploading started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) # create CKAN object CKAN = CKAN_CLIENT(options.iphost, options.auth) # create credentials and handle client if required if (options.handle_check): try: cred = PIDClientCredentials.load_from_JSON('credentials_11098') except Exception as err: logger.critical( "%s : Could not create credentials from credstore %s" % (err, options.handle_check)) ##p.print_help() sys.exit(-1) else: logger.debug("Create EUDATHandleClient instance") HandleClient = EUDATHandleClient.instantiate_with_credentials( cred) else: cred = None HandleClient = None UP = Uploader(CKAN, options.ckan_check, HandleClient, cred, OUT, options.outdir, options.fromdate, options.iphost) logger.info(' |- Host: \t%s' % CKAN.ip_host) process_upload(UP, reqlist) ## DELETING - Mode: if (pstat['status']['d'] == 'tbd'): # start the process deleting: logger.info('\n|- Deleting started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) if mode is 'multi': dir = options.outdir + '/delete' if os.path.exists(dir): process_delete(OUT, dir, options) else: logger.error( '[ERROR] The directory "%s" does not exist! No files for deleting are found!' % (dir)) else: logger.critical( "[CRITICAL] Deleting mode only supported in 'multi mode' and an explicitly deleting script given !" )
def get_pcd_from_numpy(pcd_np): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pcd_np[:, :3]) return pcd if __name__ == '__main__': # folder = '../../alignment/numpy/' folder = '/home/anastasiya/data/data_odometry_velodyne.zip/' loader = LoaderKITTI(folder, '00') odometry = OdometryEstimator() global_transform = np.eye(4) pcds = [] mapper = Mapper() for i in range(loader.length()): if i >= 50: pcd = loader.get_item(i) T, sharp_points, flat_points = odometry.append_pcd(pcd) mapper.append_undistorted(pcd[0], T, sharp_points, flat_points, vis=(i % 1 == 0)) # Visual comparison with point-to-plane ICP pcds = [] global_transform = np.eye(4) for i in range(50, 56): print(i)
def process_analysis(input_sentence, intents, entities, postags): mapping_dict = Mapper(df).mappingI() # print ("This is the mapping dict: {}".format(mapping_dict)) # print (entities) rasa_entities = {} for ent in entities: if ent["entity"] == ent["value"]: rasa_entities[ent["entity"]] = "" else: rasa_entities[ent["entity"]] = ent["value"] # print ("Rasa_entities:{}".format(rasa_entities)) if "time" in rasa_entities.keys(): period_count = periodic_counts(input_sentence) if period_count != 0: rasa_entities["period_count"] = period_count ######lookup values lookup_entities = {} for key, value in lookup_dict.items(): for word in value: if word in input_sentence: lookup_entities[key] = word.lower() ###compare lookups and rasa_entities values1 = rasa_entities.values() for k, v in lookup_entities.items(): if v not in values1: rasa_entities[k] = v rasa_keys = rasa_entities.keys() mapper_keys = mapping_dict.keys() entities_to_map = list(set(mapper_keys) & set(rasa_keys)) for entity in entities_to_map: new_key = mapping_dict[entity] old_key = entity if new_key not in rasa_keys: rasa_entities[new_key] = rasa_entities.pop(old_key) intents_list = intents.split("+") rasa_level1 = intents_list[0] rasa_level2 = intents_list[1] rasa_level3 = intents_list[2] rasa_level4 = intents_list[3] rasa_level5 = intents_list[4] level2_dict = {} if rasa_level2 != "nan": ##to check for level2 intent and mapping a column to it and adding in a dict # print(mapping_dict[rasa_level2]) level2_dict[mapping_dict[rasa_level2]] = rasa_level2 final_intents = [rasa_level1, level2_dict, rasa_level3, rasa_level4, rasa_level5] ##final intent list where level2 is dict of column and value if rasa_level3 == "top" or rasa_level3 == "bottom" or rasa_level3 == "mid": top_count = top_bottom_count(input_sentence) if top_count != 0: rasa_entities["count"] = top_count # print ("Entities b4 interpreter: {}".format(rasa_entities)) final_entities = Value_Interpretation().interpreter(rasa_entities, lookup_dict, df, mapping_dict) date_extracted = date_checker(input_sentence) if date_extracted: final_entities[mapping_dict['time']] = date_extracted print("INTENTS: ", final_intents) print("ENTITIES: ", final_entities) nlsql = Nl_Sql(cursor, final_entities, final_intents, postags, df_cols, lookup_dict, mapping_dict) gen_result = (nlsql.nl2sql()) print (gen_result) print("\n\n") return gen_result
def process(options, pstat, OUT): ## process (options,pstat) - function # Starts processing as specified in pstat['tbd'] and # according the request list given bey the options # # Parameters: # ----------- # 1. options (OptionsParser object) # 2. pstat (process status dict) # # set single or multi mode: mode = None procOptions = [ 'community', 'source', 'verb', 'mdprefix', 'mdsubset', 'target_mdschema' ] if (options.source): mode = 'single' ##HEW Not used in training options.target_mdschema = None mandParams = ['community', 'verb', 'mdprefix'] # mandatory processing params for param in mandParams: if not getattr(options, param): logger.critical( "Processing parameter %s is required in single mode" % param) sys.exit(-1) reqlist = [[ options.community, options.source, options.verb, options.mdprefix, options.mdsubset, options.ckan_check, options.handle_check, options.target_mdschema ]] elif (options.list): if (pstat['status']['g'] == 'tbd'): logger.critical( " Processing parameter [ --source | -s SOURCE ] is required in generation mode" ) sys.exit(-1) mode = 'multi' logger.debug(' |- Joblist: \t%s' % options.list) ## HEW set options.target_mdschema to NONE for Training ## options.target_mdschema=None reqlist = parse_list_file(options) ## check job request (processing) options for opt in procOptions: if hasattr(options, opt): logger.debug(' |- %s:\t%s' % (opt.upper(), getattr(options, opt))) ## GENERATION mode: if (pstat['status']['g'] == 'tbd'): GEN = Generator(pstat, options.outdir) process_generate(GEN, reqlist) ## HARVESTING mode: if (pstat['status']['h'] == 'tbd'): ### print('\n|- Harvesting started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) HV = Harvester(pstat, options.outdir, options.fromdate) process_harvest(HV, reqlist) ## MAPPINING - Mode: if (pstat['status']['m'] == 'tbd'): print('\n|- Mapping started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) MP = Mapper(OUT, options.outdir, options.fromdate) process_map(MP, reqlist) ## VALIDATOR - Mode: if (pstat['status']['v'] == 'tbd'): print('\n|- Validating started : %s' % time.strftime("%Y-%m-%d %H:%M:%S")) MP = Mapper(OUT, options.outdir, options.fromdate) process_validate(MP, reqlist) ## UPLOADING - Mode: if (pstat['status']['u'] == 'tbd'): # create CKAN object CKAN = CKAN_CLIENT(options.iphost, options.auth) # create credentials and handle client if required if (options.handle_check): try: cred = PIDClientCredentials.load_from_JSON('credentials_11098') except Exception as err: logger.critical( "%s : Could not create credentials from credstore %s" % (err, options.handle_check)) ##p.print_help() sys.exit(-1) else: logger.debug("Create EUDATHandleClient instance") HandleClient = EUDATHandleClient.instantiate_with_credentials( cred) else: cred = None HandleClient = None UP = Uploader(CKAN, options.ckan_check, HandleClient, cred, OUT, options.outdir, options.fromdate, options.iphost, options.ckan_organization) logger.info(' |- Host: \t%s' % CKAN.ip_host) process_upload(UP, reqlist)