def plotAWAP_original(var_time, Dict): """ Plot uninterpolated AWAP data. """ m [lonall, latall] = np.meshgrid((Dict['lon']), (Dict['lat'])) x, y = m(lonall, latall) cs = m.pcolor(x, y, var_time, vmin=Dict['vmin'], vmax=Dict['vmax']) cbar = m.colorbar(cs, location='right', pad="1%") cbarLabel = "%s" % (Dict['var_units']) cbar.set_label(cbarLabel) return plt
def plotAWAP_original(var_time,Dict): """ Plot uninterpolated AWAP data. """ m [lonall,latall] = np.meshgrid((Dict['lon']),(Dict['lat'])) x,y = m(lonall,latall) cs = m.pcolor(x,y,var_time,vmin=Dict['vmin'],vmax=Dict['vmax']) cbar = m.colorbar(cs, location='right', pad="1%") cbarLabel = "%s" %(Dict['var_units']) cbar.set_label(cbarLabel) return plt
def plot(var_time, Dict, labels=False, grid=False, oceans=False, cbar=True): """ A function to plot and display a basic plot of ACCESS, AWAP, or HadISST datasets. Parameters: ----------- var_time : The variable to be plotted. Use the imported data from access_prepare_ts, hadisst_prepare, awap_prepare, access_prepare_pr or access_trimmed. Dict : a dictionary defining various variables needed for the dataset to be plotted. The dictionaries are defined above in the mapAWAP(), mapACCESSpr(), mapACCESSts(), mapACCESSpr_tr() and mapHadisst() functions. labels : (default = False) Adds axis labels for longitude/latitude if "True". grid : (default = False) If set to "True", the a grid is superimposed over the map at the 1.25 (lat) by 1.875 (lon) degree resolution. If set to "False", only the latitudes/ longitudes that show the dimensions of the box are plotted. If set to "Simple", only the boundary lat/lon values for the map are shown (no grid-lines). oceans : (default = False) If set to "True", ocean regions remain unmaskeded and are plotted; if set to "False", the oceans are not plotted. cbar : (default = True) Plots a colour-bar if set to "True". """ m [lonall, latall] = np.meshgrid((Dict['lon']), (Dict['lat'])) x, y = m(lonall, latall) if grid == True: gridWhole(-47.5, -7.5, 1.25, 112.5, 157.5, 1.875) gridLabels(-47.5, -7.5, 2.5, 112.5, 159.375, 7.5) elif grid == 'Simple': gridLabels(-40.0, 0.0, 10.0, 110.0, 160.0, 10.0) elif grid == 'Ticks': gridLabels(-40.0, 0.0, 10.0, 110.0, 160.0, 10.0) else: pass if labels == True and grid == True: plt.xlabel("Longitude ($^\circ$E)", labelpad=25) plt.ylabel("Latitude ($^\circ$S)", labelpad=50) elif labels == True and not grid == True: plt.xlabel("Longitude ($^\circ$E)", labelpad=25) plt.ylabel("Latitude ($^\circ$S)", labelpad=30) else: pass if oceans == False: var_time_land = maskoceans(lonall, latall, var_time) cs = m.pcolor(x, y, var_time_land, vmin=Dict['vmin'], vmax=Dict['vmax'], cmap=plt.cm.get_cmap('RdBu')) else: cs = m.pcolor(x, y, var_time, vmin=Dict['vmin'], vmax=Dict['vmax']) if cbar == True: cbar = m.colorbar(cs, location='right', pad="1%") cbarLabel = "%s" % (Dict['var_units']) cbar.set_label(cbarLabel) else: pass return plt
A function to replace empty longitudinal values in the resampled AWAP dataset with actual longitudinal values. """ start_lon = 112.925 # Check value. Should be 112.5? newlist_lon = [] for i in range(0, 813): i = start_lon newlist_lon.append(i) start_lon += 0.05 data.variables["longitude"][:] = newlist_lon[:] return data.variables["longitude"][:] dict1 = {} dict1["var_units"] = "Precipitation (mm/day)" dict1["lat"] = lat() dict1["lon"] = lon() dict1["vmin"] = 0.0 # mm/day dict1["vmax"] = 3.0 # mm/day [lonall, latall] = np.meshgrid((dict1["lon"]), (dict1["lat"])) x, y = m(lonall, latall) # Plots an image of mean precipitation for 1900 (Jan-Dec). cs = m.pcolor(x, y, awap_data[0, :, :], vmin=dict1["vmin"], vmax=dict1["vmax"]) cbar = m.colorbar(cs, location="right", pad="1%") cbarLabel = "%s" % (dict1["var_units"]) cbar.set_label(cbarLabel) plt.show()
""" A function to replace empty longitudinal values in the resampled AWAP dataset with actual longitudinal values. """ start_lon = 112.925 #Check value. Should be 112.5? newlist_lon = [] for i in range(0,813): i = start_lon newlist_lon.append(i) start_lon += 0.05 data.variables['longitude'][:] = newlist_lon[:] return data.variables['longitude'][:] dict1 = {} dict1['var_units'] = "Precipitation (mm/day)" dict1['lat'] = lat() dict1['lon'] = lon() dict1['vmin'] = 0.0 # mm/day dict1['vmax'] = 3.0 # mm/day [lonall,latall] = np.meshgrid((dict1['lon']),(dict1['lat'])) x,y = m(lonall,latall) #Plots an image of mean precipitation for 1900 (Jan-Dec). cs = m.pcolor(x,y,awap_data[0,:,:],vmin=dict1['vmin'],vmax=dict1['vmax']) cbar = m.colorbar(cs, location='right', pad="1%") cbarLabel = "%s" %(dict1['var_units']) cbar.set_label(cbarLabel) plt.show()
def plot(var_time,Dict,labels=False,grid=False,oceans=False,cbar=True): """ A function to plot and display a basic plot of ACCESS, AWAP, or HadISST datasets. Parameters: ----------- var_time : The variable to be plotted. Use the imported data from access_prepare_ts, hadisst_prepare, awap_prepare, access_prepare_pr or access_trimmed. Dict : a dictionary defining various variables needed for the dataset to be plotted. The dictionaries are defined above in the mapAWAP(), mapACCESSpr(), mapACCESSts(), mapACCESSpr_tr() and mapHadisst() functions. labels : (default = False) Adds axis labels for longitude/latitude if "True". grid : (default = False) If set to "True", the a grid is superimposed over the map at the 1.25 (lat) by 1.875 (lon) degree resolution. If set to "False", only the latitudes/ longitudes that show the dimensions of the box are plotted. If set to "Simple", only the boundary lat/lon values for the map are shown (no grid-lines). oceans : (default = False) If set to "True", ocean regions remain unmaskeded and are plotted; if set to "False", the oceans are not plotted. cbar : (default = True) Plots a colour-bar if set to "True". """ m [lonall,latall] = np.meshgrid((Dict['lon']),(Dict['lat'])) x,y = m(lonall,latall) if grid == True: gridWhole(-47.5,-7.5,1.25,112.5,157.5,1.875) gridLabels(-47.5,-7.5,2.5,112.5,159.375,7.5) elif grid == 'Simple': gridLabels(-40.0,0.0,10.0,110.0,160.0,10.0) elif grid == 'Ticks': gridLabels(-40.0,0.0,10.0,110.0,160.0,10.0) else: pass if labels == True and grid==True: plt.xlabel("Longitude ($^\circ$E)",labelpad=25) plt.ylabel("Latitude ($^\circ$S)",labelpad=50) elif labels == True and not grid==True: plt.xlabel("Longitude ($^\circ$E)",labelpad=25) plt.ylabel("Latitude ($^\circ$S)",labelpad=30) else: pass if oceans == False: var_time_land = maskoceans(lonall,latall,var_time) cs = m.pcolor(x,y,var_time_land,vmin=Dict['vmin'],vmax=Dict['vmax'],cmap=plt.cm.get_cmap('RdBu')) else: cs = m.pcolor(x,y,var_time,vmin=Dict['vmin'],vmax=Dict['vmax']) if cbar == True: cbar = m.colorbar(cs, location='right', pad="1%") cbarLabel = "%s" %(Dict['var_units']) cbar.set_label(cbarLabel) else: pass return plt