示例#1
0
def main():
    env = MarketEnv()
    env.set_period('2001-01', '2015-12')

    session_name = 'model3'

    weights_predictor = WeightsPredictor(env)
    price_predictor = PricePredictor(env, lookback_window=30)

    # train_price_predictor(env, 250, session_name, price_predictor)
    # train_weights_predictor(env, 50, session_name, price_predictor, weights_predictor)
    backtest(env, session_name, price_predictor, weights_predictor)
示例#2
0
def get_test_performance(epoch, modelFilename='model.h5', model=None):

    import codecs
    codeListFilename = 'input_code.csv'

    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")
    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(
                ",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()
    env = MarketEnv(dir_path = "./If_index/", target_codes = \
     codeMap.keys(),  start_date = "2015-05-29", \
     end_date = "2016-08-25", sudden_death = -1.0)
    target_close = env.get_close()

    from keras.optimizers import SGD
    if (model == None and modelFilename == 'model_dqn.h5'):
        model = MarketModelBuilder(modelFilename).getModel()
    elif (model == None and modelFilename == 'model_pg.h5'):
        model = MarketPolicyGradientModelBuilder(modelFilename).getModel()

    loss = 0.
    game_over = False
    # get initial input
    input_t = env.reset()
    cumReward = 0
    cum_profit = {}
    pre_action = {}
    while not game_over:
        input_tm1 = input_t
        q = model.predict(input_tm1)
        action = np.argmax(q[0])
        input_t, reward, game_over, info = env.step(action)
        cumReward += reward
        cum_profit[info["dt"]] = cumReward
        if env.actions[action] == "LONG" or env.actions[action] == "SHORT":
            pre_action[info['dt']] = env.actions[action]
            color = bcolors.FAIL if env.actions[
                action] == "LONG" else bcolors.OKBLUE
            print "%s:\t%s\t%d\t%.2f\t%.2f\t" % (info["dt"], color + env.actions[action] + \
             bcolors.ENDC, info['correct_action'], cumReward, info["cum"]) + ("\t".join(["%s:%.2f" % (l, i)\
              for l, i in zip(env.actions, q[0].tolist())]) )

    print len(cum_profit.keys()), len(target_close)
    plot_profit(cum_profit, target_close, pre_action, "test_" + str(epoch))
    return cum_profit, target_close
示例#3
0
def make_env(wrap=True):
    env = MarketEnv(dir_path=args.market_data,
                    target_codes=codeMap.keys(),
                    input_codes=[],
                    start_date='2010-08-25',
                    end_date='2015-08-25',
                    sudden_death=-1.0)
    return env
示例#4
0
def train_price_predictor(env: MarketEnv, epochs, name, predictor):
    print('Training price predictor:\n'
          '  session name: {}\n'
          '  training data period: {} - {}\n'
          '  number of epochs: {}'.format(name, env.period_start, env.period_end, epochs))

    if predictor.try_load(name):
        print('Successfully loaded session data')
    else:
        print('Could not load session data')

    env.reset()

    steps = []
    while env.should_continue():
        lookback_prices = env.get_returns_from_n_days(predictor.lookback_window)
        if not env.in_last_month():
            steps.append((lookback_prices, env.next_mtm_returns()))
        env.step()

    predictor.train(steps, epochs)
    predictor.save(name)
    print('Successfully saved session data')
示例#5
0
def pg_train():
	import sys
	import codecs

	codeListFilename = sys.argv[1]
	modelFilename = sys.argv[2] if len(sys.argv) > 2 else None
	historyFilename = sys.argv[3] if len(sys.argv) > 3 else None

	codeMap = {}
	f = codecs.open(codeListFilename, "r", "utf-8")

	for line in f:
		if line.strip() != "":
			tokens = line.strip().split(",") if not "\t" in line else line.strip().split("\t")
			codeMap[tokens[0]] = tokens[1]

	f.close()

	env = MarketEnv(dir_path = "./If_index/", target_codes = codeMap.keys(),  start_date = "2013-05-26", end_date = "2015-08-25", sudden_death = -1.0)

	pg = PolicyGradient(env, discount = 0.9, model_filename = modelFilename, history_filename = historyFilename)
	pg.train(verbose = 2)
示例#6
0
def init_env1():
    dir_path = os.path.join(local_path, 'tmp', 'market_env')
    util.mkdirp(dir_path)

    df = pd.DataFrame(
        data={
            'date': [10000 + i for i in range(1, 21)],
            'open': [1.0 + 0.1 * i for i in range(1, 21)],
            'high': [1.0 + 0.1 * i for i in range(1, 21)],
            'low': [1.0 + 0.1 * i for i in range(1, 21)],
            'close': [1.0 + 0.1 * i for i in range(1, 21)],
            'volume': [1000 + 10 * i for i in range(1, 21)],
        })

    df = df[['date', 'open', 'high', 'low', 'close', 'volume']]
    df.to_csv(os.path.join(dir_path, 'SYM1.csv'), index=False)

    env = MarketEnv(dir_path=dir_path,
                    codes=['SYM1'],
                    target_date_start='10015',
                    target_date_end='10020',
                    scope=4)
    return env

def exploreFolder(folder):
    files = []
    for (dirpath, dirnames, filenames) in walk(folder):
        for f in filenames:
            files.append(f.replace(".csv", ""))
        break
    return files


if __name__ == "__main__":

    targetCodes = exploreFolder('sample_data')
    for t in targetCodes:
        print t

    env = MarketEnv(dir_path="./sample_data/",
                    target_codes=targetCodes,
                    start_date="2015-03-13",
                    scope=60,
                    end_date="2017-08-11",
                    sudden_death_rate=0.7)

    pg = DeepQ(env,
               current_discount=0.66,
               future_discount=0.80,
               model_file_name="./model/600197.model")

    pg.train(verbose=1)
示例#8
0
    # import codecs
    #keras.layers.Convolution2D()

    historyFilename = None
    modelFilename = None  # 'model_1.h5' # None

    name = 'SP500_'
    codeList = []
    for i in range(1, 10):
        codeList.append(name + str(i))

    # codeList =  ['SP500'] # ['DJI','SP500','NASDAQ','005380','005930','005935','012330','015760','028260','032830','035420'] # '090430' '000660' ['DJI','SP500']

    env = MarketEnv(dir_path="/home/mercy/notebook/sample_data/",
                    target_codes=codeList,
                    input_codes=[],
                    start_date="2009-01-03",
                    end_date="2016-01-03",
                    sudden_death=-1)
    pg = PolicyGradient(env,
                        discount=0.9,
                        model_filename=modelFilename,
                        history_filename=historyFilename
                        )  # start_date="2009-01-03", end_date="2016-01-03"
    pg.train(max_episode=50, threshold=0.5, verbose=0)

#%%
import numpy as np
import pandas as pd
import seaborn as sn
from matplotlib import pyplot as plt
示例#9
0
    import sys
    import codecs

    codeListFilename = sys.argv[1]
    modelFilename = sys.argv[2] if len(sys.argv) > 2 else None
    historyFilename = sys.argv[3] if len(sys.argv) > 3 else None

    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")

    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(
                ",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()

    env = MarketEnv(dir_path="./data/",
                    target_codes=codeMap.keys(),
                    input_codes=[],
                    start_date="2010-08-25",
                    end_date="2015-08-25",
                    sudden_death=-1.0)

    pg = PolicyGradient(env,
                        discount=0.9,
                        model_filename=modelFilename,
                        history_filename=historyFilename)
    pg.train(verbose=1)
示例#10
0
def train():
    import sys
    import codecs

    codeListFilename = sys.argv[1]
    modelFilename = sys.argv[2] if len(sys.argv) > 2 else None

    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")

    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(
                ",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()

    env = MarketEnv(dir_path = "./If_index/", target_codes = \
     codeMap.keys(),  start_date = "2013-05-26", \
     end_date = "2015-08-25", sudden_death = -1.0)
    target_close = env.get_close()
    # parameters
    epsilon = .45  # exploration
    min_epsilon = 0.1
    epoch = 1000
    max_memory = 5000
    batch_size = 256
    discount = 0.9
    update_target_weight_step = 10
    from keras.optimizers import SGD
    model = MarketModelBuilder(modelFilename).getModel()
    target_model = MarketModelBuilder(modelFilename).getModel()

    sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='mse', optimizer='rmsprop')
    target_model.compile(loss='mse', optimizer='rmsprop')

    # Initialize experience replay object
    exp_replay = ExperienceReplay(max_memory=max_memory, discount=discount)

    # Train
    win_cnt = 0
    for e in range(epoch):
        loss = 0.
        env.reset()
        game_over = False
        # get initial input
        input_t = env.reset()
        cumReward = 0
        cum_profit = {}
        pre_action = {}

        iter_cnt = 0
        while not game_over:
            input_tm1 = input_t
            isRandom = False

            # get next action
            if np.random.rand() <= epsilon:
                action = np.random.randint(0, env.action_space.n, size=1)[0]
                isRandom = True
            else:
                q = model.predict(input_tm1)
                action = np.argmax(q[0])
                if np.nan in q:
                    print "OCCUR NaN!!!"
                    exit()

            # apply action, get rewards and new state
            input_t, reward, game_over, info = env.step(action)
            cumReward += reward
            cum_profit[info["dt"]] = cumReward
            if env.actions[action] == "LONG" or env.actions[action] == "SHORT":
                color = bcolors.FAIL if env.actions[
                    action] == "LONG" else bcolors.OKBLUE
                pre_action[info['dt']] = env.actions[action]
                if isRandom:
                    color = bcolors.WARNING if env.actions[
                        action] == "LONG" else bcolors.OKGREEN
                print "%s:\t%s\t%d\t%.5f\t%.2f\t" % (info["dt"], color + env.actions[action] + \
                 bcolors.ENDC, info['correct_action'], cumReward, info["cum"]) + ("\t".join(["%s:%.2f" % (l, i)\
                  for l, i in zip(env.actions, q[0].tolist())]) if isRandom == False else "")

            # store experience
            exp_replay.remember([input_tm1, action, reward, input_t],
                                game_over)

            # adapt model
            if (len(exp_replay.memory) >= batch_size):
                inputs, targets = exp_replay.get_batch(target_model,
                                                       batch_size=batch_size)
                loss += model.train_on_batch(inputs, targets)
            if (iter_cnt % update_target_weight_step == 0
                ):  # update target estimator every 5 step
                print "update target model weights"
                target_model = copy_model_weight(model, target_model)
            iter_cnt += 1

        if cumReward > 0 and game_over:
            win_cnt += 1
        test_util.plot_profit(cum_profit, target_close, pre_action,
                              "dqn_train_" + str(e))
        test_util.get_test_performance(e, 'model_dqn.h5', model)

        print("Epoch {:03d}/{} | Loss {:.4f} | Win count {} | Epsilon {:.4f}".
              format(e, epoch, loss, win_cnt, epsilon))
        # Save trained model weights and architecture, this will be used by the visualization code
        if (e / 5 == 0 and e != 0):
            model.save_weights(
                "model.h5" if modelFilename == None else modelFilename,
                overwrite=True)
        epsilon = max(min_epsilon, epsilon * 0.99)
示例#11
0
# 创建环境
codeMap = {}
codeListFilename = "./work/kospi_10.csv"
f = codecs.open(codeListFilename, "r", "utf-8")
for line in f:
    if line.strip() != "":
        tokens = line.strip().split(
            ",") if not "\t" in line else line.strip().split("\t")
        codeMap[tokens[0]] = tokens[1]

f.close()

env = MarketEnv(dir_path="./work/sample_data/",
                target_codes=list(codeMap.keys()),
                input_codes=[],
                start_date="2013-08-26",
                end_date="2015-08-25",
                sudden_death=-1.0)

obs_dim = 60 * 2
act_dim = 2
print(env.actions)
logger.info('obs_dim {}, act_dim {}'.format(obs_dim, act_dim))

model = Model(act_dim=act_dim)
alg = PolicyGradient(model, lr=LEARNING_RATE)
agent = Agent(alg, obs_dim=obs_dim, act_dim=act_dim)

# 加载模型
# if os.path.exists('./model.ckpt'):
#     agent.restore('./model.ckpt')
示例#12
0
    argi += 1

    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")

    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(
                ",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()

    env = MarketEnv(dir_path="./data/",
                    target_codes=list(codeMap.keys()),
                    input_codes=[],
                    start_date="2002-12-25",
                    end_date="2007-12-25",
                    sudden_death=-1.0)
    env_test = MarketEnv(dir_path="./data/",
                         target_codes=list(codeMap.keys()),
                         input_codes=[],
                         start_date="2007-12-26",
                         end_date="2008-12-25",
                         sudden_death=-1.0)
    pg = PolicyGradient(env,
                        env_test,
                        discount=0.9,
                        model_filename=modelFilename,
                        history_filename=historyFilename)
    if mode == 'train':
        pg.train(verbose=0)
示例#13
0
def backtest(env: MarketEnv, name, price_predictor, weights_predictor: WeightsPredictor = None):
    env.reset()

    if env.current_ind == 0:
        raise ValueError('Backtesting should be offset by at least one month from data start')

    print('Backtesting model:\n'
          '  session name: {}\n'
          '  period: {} - {}'.format(name, env.period_start, env.period_end))

    if price_predictor.try_load(name):
        print('Successfully loaded session data')
    else:
        print('Could not load session data, aborting')
        return

    if weights_predictor is not None:
        if weights_predictor.try_load(name):
            print('Successfully loaded weights predictor session data')
        else:
            print('Could not load weights predictor session data, aborting')
            return

    weights = []
    returns = []

    total_reward = 1

    prev_weights = None

    while env.should_continue():
        lookback_prices = env.get_returns_from_n_days(price_predictor.lookback_window, month_offset=-1)

        prices_pred = price_predictor.predict(lookback_prices)
        log_prices_pred = np.log(1 + prices_pred)

        if prev_weights is None:
            curr_weights = np.clip(0.2 + log_prices_pred, 0, 1)
        elif weights_predictor is not None:
            curr_weights = weights_predictor.predict(prices_pred, prev_weights)
            weights_min = curr_weights.min()
            if weights_min < 0:
                curr_weights += -weights_min
        else:
            curr_weights = prev_weights + np.clip(log_prices_pred, -0.2, 0.2)
            weights_min = curr_weights.min()
            if weights_min < 0:
                curr_weights += -weights_min
        curr_weights /= curr_weights.sum()

        mtm_return = env.current_mtm_returns()
        r = np.dot(curr_weights, mtm_return)
        if prev_weights is not None:
            r -= env.transaction_cost(prev_weights, curr_weights)

        total_reward *= (1 + r)

        weights.append((env.current_month_timestamp(), *list(curr_weights)))
        returns.append((env.current_month_timestamp(end=True), r))

        prev_weights = curr_weights
        env.step()

    print(total_reward)

    start = weights[0][0]
    end = weights[-1][0]
    date_str = '{}_{}_{}_{}'.format(start.month, start.year, end.month, end.year)

    weights_df = pd.DataFrame(weights, columns=('Date', *env.data.columns))
    weights_df.set_index('Date', inplace=True)
    weights_df.to_csv(os.path.join(results_output_path(name), 'weights_{}.csv'.format(date_str)))

    returns_df = pd.DataFrame(returns, columns=('Date', 'Return'))
    returns_df.set_index('Date', inplace=True)
    returns_df.to_csv(os.path.join(results_output_path(name), 'returns_{}.csv'.format(date_str)))
示例#14
0
    import codecs

    argi = 1
    codeListFilename = sys.argv[argi]; argi +=1
    train_start = sys.argv[argi]; argi += 1
    train_end = sys.argv[argi]; argi += 1
    test_code = sys.argv[argi]; argi += 1
    test_start = sys.argv[argi]; argi += 1
    test_end = sys.argv[argi]; argi += 1
    prefix = sys.argv[argi]; argi += 1

    model_filename = "%s-%s-%s.pg.model.h5" % (codeListFilename, train_start, train_end)
    print("model file name : %s" % model_filename)
    history_filename = "%s-%s-%s.pg.history.h5" % (codeListFilename, train_start, train_end)
    print("history file name : %s" % history_filename)

    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")

    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()

    env = MarketEnv(dir_path = "./data/", target_codes = list(codeMap.keys()), input_codes = [], start_date = train_start, end_date = train_end, sudden_death = -1.0)
    env_test = MarketEnv(dir_path = "./data/", target_codes = list([test_code]), input_codes = [], start_date = test_start, end_date = test_end, sudden_death = -1.0)
    pg = PolicyGradient(env, env_test, discount = 0.9, model_filename = model_filename, history_filename = history_filename)
    pg.paper(test_code, filename="paper-%s-%s-%s-%s.csv" % (prefix, test_code, test_start, test_end))
示例#15
0
    import sys
    import codecs

    codeListFilename = sys.argv[1]
    modelFilename = sys.argv[2] if len(sys.argv) > 2 else None
    historyFilename = sys.argv[3] if len(sys.argv) > 3 else None

    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")

    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(
                ",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()

    # 1 step 1 data
    env = MarketEnv(dir_path="../../dataset/",
                    target_codes=codeMap.keys(),
                    input_codes=[],
                    start_date="1514764800",
                    end_date="1560828600",
                    sudden_death=-1.0,
                    cumulative_reward=True)

    #pg = PolicyGradient_run(env, discount = 0.9, model_filename = modelFilename, history_filename = historyFilename, max_memory=200)
    #pg.train(verbose = 1)
    main(env)
示例#16
0
def train_weights_predictor(env: MarketEnv, epochs, name, price_predictor, weights_predictor: WeightsPredictor):
    print('Training weights predictor:\n'
          '  session name: {}\n'
          '  training data period: {} - {}\n'
          '  number of epochs: {}'.format(name, env.period_start, env.period_end, epochs))

    if price_predictor.try_load(name):
        print('Successfully loaded price predictor session data')
    else:
        print('Could not load price predictor session data, aborting')
        return

    if weights_predictor.try_load(name):
        print('Successfully loaded weights predictor session data')
    else:
        print('Could not load weights predictor session data')

    for i in range(epochs):

        print('Epoch # {}'.format(i))

        training_progress = i / epochs

        env.reset()

        prev_weights = None
        total_reward = 1

        steps = []
        while env.should_continue():
            lookback_prices = env.get_returns_from_n_days(price_predictor.lookback_window, month_offset=-1)

            pred_prices = price_predictor.predict(lookback_prices)
            pred_prices = np.clip(pred_prices, a_min=-0.99, a_max=None)
            log_pred_prices = np.log(1 + pred_prices)

            if prev_weights is None:
                curr_weights = np.clip(0.2 + log_pred_prices, 0, 1)
            else:
                calculated_weights = prev_weights + np.clip(log_pred_prices, -0.2, 0.2)
                weights_min = calculated_weights.min()
                if weights_min < 0:
                    calculated_weights += -weights_min
                calculated_weights /= calculated_weights.sum()

                pred_weights = weights_predictor.predict(pred_prices, prev_weights)
                weights_min = pred_weights.min()
                if weights_min < 0:
                    pred_weights += -weights_min
                pred_weights /= pred_weights.sum()

                curr_weights = ((0.8 - 0.3 * training_progress) * calculated_weights +
                                (0.2 + 0.3 * training_progress) * pred_weights)

            curr_weights /= curr_weights.sum()

            mtm_return = env.current_mtm_returns()
            r = np.dot(curr_weights, mtm_return)
            if prev_weights is not None:
                r -= env.transaction_cost(prev_weights, curr_weights)
            total_reward *= (1 + r)

            if prev_weights is not None:
                steps.append((pred_prices, prev_weights, curr_weights))

            prev_weights = curr_weights
            env.step()

        print(total_reward)
        print(curr_weights)

        weights_predictor.train(steps, epochs=3, verbose=0)

    weights_predictor.save(name)
    print('Successfully saved session data')
示例#17
0
                                                   train_start, train_end)
    print("history file name : %s" % history_filename)

    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")

    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(
                ",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()

    env = MarketEnv(dir_path="./data/",
                    codes=list(codeMap.keys()),
                    target_date_start=train_start,
                    target_date_end=train_end,
                    sudden_death=-1.0)
    env_test = MarketEnv(dir_path="./data/",
                         codes=list(codeMap.keys()),
                         target_date_start=test_start,
                         target_date_end=test_end,
                         sudden_death=-1.0)
    pg = PolicyGradient(env,
                        env_test,
                        discount=0.9,
                        model_filename=model_filename,
                        history_filename=history_filename)
    pg.train(verbose=0, max_episode=max_episode)
 def setUp(self):
     self.env = MarketEnv(csv_name="../data/BTCETH60.csv",
                          window_size=10,
                          seed=42)
     self.calc = self.env._calculate_step
示例#19
0
    modelFilename = sys.argv[2] if len(sys.argv) > 2 else None

    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")

    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(
                ",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()

    env = MarketEnv(dir_path="./data/",
                    target_codes=list(codeMap.keys()),
                    input_codes=[],
                    start_date="2013-08-26",
                    end_date="2015-08-25",
                    sudden_death=-1.0)

    # parameters
    epsilon = .5  # exploration
    min_epsilon = 0.1
    epoch = 100000
    max_memory = 5000
    batch_size = 128
    discount = 0.8

    from keras.optimizers import SGD
    model = MarketModelBuilder(modelFilename).getModel()
    sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='mse', optimizer='rmsprop')
示例#20
0
    codeMap = {}
    f = codecs.open(codeListFilename, "r", "utf-8")

    for line in f:
        if line.strip() != "":
            tokens = line.strip().split(
                ",") if not "\t" in line else line.strip().split("\t")
            codeMap[tokens[0]] = tokens[1]

    f.close()

    #	env = MarketEnv(dir_path = "./data/", target_codes = codeMap.keys(), input_codes = [], start_date = "2013-08-26", end_date = "2015-08-25", sudden_death = -1.0)
    env = MarketEnv(dir_path="../../dataset/",
                    target_codes=codeMap.keys(),
                    input_codes=[],
                    start_date="1546300800",
                    end_date="1558673100",
                    sudden_death=-1.0)

    # parameters
    epsilon = .5  # exploration
    min_epsilon = 0.1
    epoch = 10
    max_memory = 5000
    batch_size = 1
    discount = 0.8

    from keras.optimizers import SGD
    model = MarketModelBuilder(modelFilename).getModel()
    sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='mse', optimizer='rmsprop')