示例#1
0
def shrink_mat(array):
    dim = 5
    step = 2

    sdist = Stationary(array)

    ans = np.zeros((dim, dim))

    for i in range(dim):
        for j in range(dim):
            ans[i,j] = sdist[step*i]*array[step*i, step*j:step*j+2].sum() + \
                       sdist[step*i+1]*array[step*i+1, step*j:step*j+2].sum()

            ans[i, j] = ans[i, j] / sdist[step * i:step * i + 2].sum()

    return ans
示例#2
0
    data_is_o = data_is_o[:, 2000:]
    np.save(path_to_data_is_o + '.npy', data_is_o)
    split_shock(path_to_data_is_o, 25_000, num_core)
    del data_rand

    ### end generate shocks ###

    ### check
    f = open(nd_log_file, 'w')
    f.writelines(
        np.array_str(np.bincount(data_i_s[:, 0]) /
                     np.sum(np.bincount(data_i_s[:, 0])),
                     precision=4,
                     suppress_small=True) + '\n')
    f.writelines(
        np.array_str(Stationary(prob), precision=4, suppress_small=True) +
        '\n')

    f.writelines(
        np.array_str(np.bincount(data_is_o[:, 0]) /
                     np.sum(np.bincount(data_is_o[:, 0])),
                     precision=4,
                     suppress_small=True) + '\n')
    f.writelines(
        np.array_str(Stationary(prob_yo), precision=4, suppress_small=True) +
        '\n')

    # f.writelines('yc_init = ' +  str(yc_init) + '\n')
    # f.writelines('GDP_implied = ' +  str(GDP_implied) + '\n')
    f.close()
示例#3
0
    data_laborinc = w * data_eps * data_n
    data_bizinc = p * data_ys - (rs + delk) * data_ks - data_x - w * data_ns

    print('### labor income wepsn ###')

    print('')
    print('simulated result')

    prob_wepsn = get_transition(data_laborinc[:, -2],
                                data_laborinc[:, -1],
                                num_bins=5,
                                full_output=True)[0]
    print('transition of wepsn')
    print(np.array_str(prob_wepsn, precision=4, suppress_small=True))
    print('implied SS of wespn')
    print(Stationary(prob_wepsn))
    print('')
    print('P_eps')
    print(prob_eps)
    print('SS of P_eps')
    print(Stationary(prob_eps))

    print('')
    print('### biz income pys - (rs+delk)ks - wns - x ###')

    print('')
    print('simulated result')

    prob_bizinc = get_transition(data_bizinc[:, -2],
                                 data_bizinc[:, -1],
                                 num_bins=5,