示例#1
0
    def __init__(self, config):
        super(ResNet50Conv5RecFeatureExtractor, self).__init__()
        # reso: [H, W]
        resolution = config.MODEL.ROI_REC_HEAD.POOLER_RESOLUTION
        scales = config.MODEL.ROI_REC_HEAD.POOLER_SCALES
        pooler = PyramidRROIAlign(
            output_size=resolution,
            scales=scales,
        )

        self.word_margin = config.MODEL.ROI_REC_HEAD.BOXES_MARGIN
        self.det_margin = config.MODEL.RRPN.GT_BOX_MARGIN

        self.rescale = self.word_margin / self.det_margin

        # stage = resnet.StageSpec(index=4, block_count=3, return_features=False)
        '''
        head = resnet.ResNetHead(
            block_module=config.MODEL.RESNETS.TRANS_FUNC,
            stages=(stage,),
            num_groups=config.MODEL.RESNETS.NUM_GROUPS,
            width_per_group=config.MODEL.RESNETS.WIDTH_PER_GROUP,
            stride_in_1x1=config.MODEL.RESNETS.STRIDE_IN_1X1,
            stride_init=None,
            res2_out_channels=config.MODEL.RESNETS.RES2_OUT_CHANNELS,
            dilation=config.MODEL.RESNETS.RES5_DILATION
        )
        '''
        self.pooler = pooler
示例#2
0
    def __init__(self, config):
        super(ResNet50Conv5ROIFeatureExtractor, self).__init__()

        resolution = config.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        scales = config.MODEL.ROI_BOX_HEAD.POOLER_SCALES
        sampling_ratio = config.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        pooler = PyramidRROIAlign(
            output_size=(resolution, resolution),
            scales=scales,
        )

        stage = resnet.StageSpec(index=4, block_count=3, return_features=False)
        head = resnet.ResNetHead(
            block_module=config.MODEL.RESNETS.TRANS_FUNC,
            stages=(stage,),
            num_groups=config.MODEL.RESNETS.NUM_GROUPS,
            width_per_group=config.MODEL.RESNETS.WIDTH_PER_GROUP,
            stride_in_1x1=config.MODEL.RESNETS.STRIDE_IN_1X1,
            stride_init=None,
            res2_out_channels=config.MODEL.RESNETS.RES2_OUT_CHANNELS,
            dilation=config.MODEL.RESNETS.RES5_DILATION
        )

        self.pooler = pooler
        self.head = head
示例#3
0
    def __init__(self, cfg):
        super(FPN2MLPFeatureExtractor, self).__init__()

        resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES
        sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        pooler = PyramidRROIAlign(
            output_size=(resolution, resolution),
            scales=scales,
        )
        input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS * resolution**2
        representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM
        use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN
        self.pooler = pooler
        self.fc6 = make_fc(input_size, representation_size, use_gn)
        self.fc7 = make_fc(representation_size, representation_size, use_gn)
示例#4
0
    def __init__(self, cfg):
        """
        Arguments:
            num_classes (int): number of output classes
            input_size (int): number of channels of the input once it's flattened
            representation_size (int): size of the intermediate representation
        """
        super(MaskRCNNFPNFeatureExtractor, self).__init__()

        resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
        scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES
        sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO
        # pooler = Pooler(
        #     output_size=(resolution, resolution),
        #     scales=scales,
        #     sampling_ratio=sampling_ratio,
        # )
        pooler = PyramidRROIAlign(
            output_size=(resolution, resolution),
            scales=scales,
        )
        input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS
        self.pooler = pooler

        layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS

        next_feature = input_size
        self.blocks = []
        for layer_idx, layer_features in enumerate(layers, 1):
            layer_name = "mask_fcn{}".format(layer_idx)
            module = Conv2d(next_feature,
                            layer_features,
                            3,
                            stride=1,
                            padding=1)
            # Caffe2 implementation uses MSRAFill, which in fact
            # corresponds to kaiming_normal_ in PyTorch
            nn.init.kaiming_normal_(module.weight,
                                    mode="fan_out",
                                    nonlinearity="relu")
            nn.init.constant_(module.bias, 0)
            self.add_module(layer_name, module)
            next_feature = layer_features
            self.blocks.append(layer_name)
示例#5
0
    def __init__(self, cfg):
        """
        Arguments:
            num_classes (int): number of output classes
            input_size (int): number of channels of the input once it's flattened
            representation_size (int): size of the intermediate representation
        """
        super(MaskRCNNFPNFeatureExtractor, self).__init__()

        resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
        scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES
        sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO
        pooler = PyramidRROIAlign(
            output_size=(resolution, resolution),
            scales=scales,
        )
        input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS
        self.pooler = pooler

        use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN
        layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS
        dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION

        self.word_margin = cfg.MODEL.ROI_REC_HEAD.BOXES_MARGIN
        self.det_margin = cfg.MODEL.RRPN.GT_BOX_MARGIN

        self.rescale = self.word_margin / self.det_margin

        next_feature = input_size
        self.blocks = []
        for layer_idx, layer_features in enumerate(layers, 1):
            layer_name = "mask_fcn{}".format(layer_idx)
            module = make_conv3x3(next_feature,
                                  layer_features,
                                  dilation=dilation,
                                  stride=1,
                                  use_gn=use_gn)
            self.add_module(layer_name, module)
            next_feature = layer_features
            self.blocks.append(layer_name)