示例#1
0
 def test_run_jobs(self):
     """
     Checks whether run_jobs really returns only 1 network.
     """
     inputs = {
         'biom_file': None,
         'cluster': None,
         'otu_meta': None,
         'prefix': None,
         'sample_data': None,
         'split': None,
         'tax_table': [(testloc[:-17] + 'otu_tax.txt')],
         'fp': testloc + '/data',
         'otu_table': [(testloc[:-17] + 'otu_otus.txt')],
         'tools': ['conet'],
         'conet_bash': None,
         'spiec': None,
         'conet': (os.path.dirname(massoc.__file__)[:-6] + 'tests\\CoNet3'),
         'spar_pval': None,
         'spar_boot': None,
         'levels': ['family'],
         'prev': ['20'],
         'name': ['test'],
         'cores': None,
         'min': ['10'],
         'spar': None
     }
     batch = Batch(testbiom, inputs)
     netbatch = Nets(batch)
     jobs = get_joblist(netbatch)
     netbatch.collapse_tax()
     netbatch.write_bioms()
     orig_ids, obs_ids = netbatch._prepare_conet()
     filenames = netbatch.get_filenames()
     network = run_jobs(spar=inputs['spar'],
                        conet=inputs['conet'],
                        orig_ids=orig_ids,
                        obs_ids=obs_ids,
                        job=jobs[0],
                        filenames=filenames)
     x = inputs['name'][0]
     filename = netbatch.inputs['fp'] + '/' + x + '_species.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/' + x + '_genus.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/' + x + '_family.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/' + x + '_order.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/' + x + '_class.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/' + x + '_phylum.hdf5'
     call("rm " + filename)
     call(("rm " + inputs['fp'] + '/' + inputs['tools'][0] + '_' +
           inputs['name'][0] + '_' + inputs['levels'][0] + '.hdf5'))
     self.assertEqual(len(network), 1)
示例#2
0
 def test_normalize_transform(self):
     """Is the transformed batch file different from the original one?"""
     inputs = {
         'biom_file': None,
         'cluster': ['Affinity'],
         'nclust': ['4'],
         'otu_meta': None,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': 'Rocket Science',
         'tax_table': ['tax_bananas.txt'],
         'name': ['test'],
         'fp': os.path.dirname(massoc.__file__)[:-7].replace('\\', '/')
     }
     batch = Batch(testbiom, inputs)
     clrbatch = batch.normalize_transform(mode="clr")
     self.assertFalse(batch.otu['test'] == clrbatch.otu['test'])
示例#3
0
 def test_split_biom(self):
     """Does 'split_biom' correctly split a biom file
     according to sample data properties?"""
     inputs = {
         'biom_file': None,
         'cluster': None,
         'otu_meta': None,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': 'BODY_SITE',
         'tax_table': ['tax_bananas.txt'],
         'name': ['test'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests')
     }
     batch = Batch(deepcopy(testbiom), inputs)
     batch.split_biom()
     self.assertEqual(len(batch.otu), 3)
示例#4
0
 def test_collapse_tax(self):
     """Does the function for collapsing by taxonomy correctly
     add additional dictionaries?"""
     inputs = {
         'biom_file': None,
         'cluster': None,
         'otu_meta': None,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': ['BODY_SITE'],
         'tax_table': ['tax_bananas.txt'],
         'levels': ['otu', 'genus'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests'),
         'name': ['test']
     }
     batch = Batch(testbiom, inputs)
     batch.collapse_tax()
     self.assertEqual(len(batch.genus), 1)
示例#5
0
 def test_run_parallel(self):
     """Checks if the run_parallel function works without raising an error."""
     inputs = {
         'biom_file': None,
         'cluster': None,
         'otu_meta': None,
         'prefix': None,
         'sample_data': None,
         'split': None,
         'tax_table': [(testloc[:-17] + 'otu_tax.txt')],
         'fp': testloc,
         'otu_table': [(testloc[:-17] + 'otu_otus.txt')],
         'tools': ['conet'],
         'spiec': None,
         'conet': (os.path.dirname(massoc.__file__)[:-6] +
                   'tests\\CoNet3'),  # cannot be used in general testing
         'conet_bash': None,
         'spar_pval': None,
         'spar_boot': None,
         'levels': ['family'],
         'prev': 20,
         'min': 10,
         'name': ['test'],
         'cores': None,
         'rar': None,
         'spar': None
     }
     batch = Batch(testbiom, inputs)
     batch.collapse_tax()
     batch.inputs['procbioms'] = dict()
     batch.inputs['procbioms']['family'] = dict()
     batch.inputs['procbioms']['family'][
         'test'] = 'C://Users//u0118219//Documents//massoc//test_family.hdf5'
     netbatch = Nets(batch)
     netbatch = run_parallel(netbatch)
     filename = netbatch.inputs['fp'] + '/' + x + 'otu.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/' + x + '_family.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/conet_family_test.txt'
     call("rm " + filename)
     self.assertEqual(len(netbatch.networks), 1)
示例#6
0
 def test_prev_filter(self):
     """Does the prevalence filter correctly
     reduce the number of taxa in a table?"""
     inputs = {
         'biom_file': None,
         'cluster': 'Affinity',
         'nclust': ['4'],
         'otu_meta': None,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': 'Rocket Science',
         'tax_table': ['tax_bananas.txt'],
         'prev': 40,
         'name': ['test'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests')
     }
     batch = Batch(deepcopy(testbiom), inputs)
     batch.prev_filter()
     self.assertEqual(batch.otu['test'].shape[0], 4)
示例#7
0
 def test_cluster_bioms_spectral(self):
     """Does 'cluster_bioms.py' correctly cluster
     a biom file and split the file into multiple
     subsets of the data?"""
     inputs = {
         'biom_file': None,
         'cluster': 'Spectral',
         'otu_meta': None,
         'nclust': 4,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': 'TRUE',
         'tax_table': ['tax_bananas.txt'],
         'name': ['test'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests')
     }
     batch = Batch(deepcopy(testbiom), inputs)
     np.random.seed(8888)
     batch.cluster_biom()
     self.assertEqual(len(batch.otu), 4)
示例#8
0
 def test_norm_machine(self):
     """While data is normalized in the machine
     learning function, it should NOT be returned
     as normalized count data."""
     inputs = {
         'biom_file': None,
         'cluster': 'K-means',
         'otu_meta': None,
         'nclust': 4,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': None,
         'tax_table': ['tax_bananas.txt'],
         'name': ['test'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests')
     }
     batch = Batch(deepcopy(testbiom), inputs)
     batch.cluster_biom()
     self.assertEqual(batch.otu['test']._data[1, 1],
                      testbiom['otu']['test']._data[1, 1])
示例#9
0
 def test_prev_filter_qual(self):
     """Does the prevalence filter remove the correct taxon?"""
     inputs = {
         'biom_file': None,
         'cluster': 'Affinity',
         'nclust': 4,
         'otu_meta': None,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': 'Rocket Science',
         'tax_table': ['tax_bananas.txt'],
         'prev': 40,
         'name': ['test'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests')
     }
     batch = Batch(deepcopy(testbiom), inputs)
     rawtable = batch.otu['test'].matrix_data
     batch.prev_filter(mode='prev')
     newtable = batch.otu['test'].matrix_data
     self.assertEqual((rawtable.sum(axis=1)[0] + rawtable.sum(axis=1)[4]),
                      newtable.sum(axis=1)[3])
示例#10
0
 def test_get_joblist(self):
     """
     Checks whether the joblist function
     returns a joblist in the appropriate format:
     list of dicts with each only 1 key.
     """
     inputs = {
         'biom_file': None,
         'cluster': None,
         'otu_meta': None,
         'prefix': None,
         'sample_data': None,
         'split': None,
         'tax_table': [(testloc + 'otu_tax.txt')],
         'fp': testloc,
         'otu_table': [(testloc + 'otu_otus.txt')],
         'tools': ['spiec-easi', 'conet'],
         'spiec': ['somefile.txt'],
         'conet': None,
         'spar_pval': None,
         'spar_boot': None,
         'levels': ['family', 'class'],
         'prev': ['20'],
         'name': ['test'],
         'cores': None
     }
     batch = Batch(testbiom, inputs)
     netbatch = Nets(batch)
     jobs = get_joblist(netbatch)
     filename = netbatch.inputs['fp'] + '/' + x + 'otu.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/' + x + '_family.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/' + x + '_class.hdf5'
     call("rm " + filename)
     filename = netbatch.inputs['fp'] + '/spiec-easi_family_test.txt'
     call("rm " + filename)
     self.assertEqual(len(jobs), 6)
示例#11
0
文件: main.py 项目: ramellose/massoc
def run_network(inputs, publish=False):
    """
    Pipes functions from the different massoc modules to run complete network inference.

    :param inputs: Dictionary of inputs.
    :param publish: If True, publishes messages to be received by GUI.
    :return:
    """
    _create_logger(inputs['fp'])
    old_inputs = read_settings(inputs['fp'] + '/settings.json')
    old_inputs.update(inputs)
    inputs = old_inputs
    # handler to file
    filestore = read_bioms(inputs['procbioms'])
    bioms = Batch(filestore, inputs)
    bioms = Nets(bioms)
    if inputs['tools'] is not None:
        logger.info('Tools to run with default settings: ' + str(inputs['tools']) + ' ')
    bioms.inputs['network'] = list()
    network_names = list()
    for tool in bioms.inputs['tools']:
        for level in bioms.inputs['levels']:
            for name in bioms.inputs['name']:
                filename = bioms.inputs['fp'] + '/' + tool + '_' + level + '_' + name + '.txt'
                network_names.append(filename)
    bioms.inputs['network'] = network_names
    if publish:
        pub.sendMessage('update', msg='Starting network inference. This may take some time!')
    try:
        logger.info('Running network inference...  ')
        networks = run_parallel(bioms)
        networks.write_networks()
    except Exception:
        logger.warning('Failed to complete network inference.  ', exc_info=True)
    write_settings(networks.inputs)
    if publish:
        pub.sendMessage('update', msg="Finished running network inference!")
    logger.info('Finished running network inference.  ')
示例#12
0
 def test_rarefy(self):
     """The rarefaction function should
     remove samples below a certain read count and then perform rarefaction.
     """
     inputs = {
         'biom_file': None,
         'cluster': 'K-means',
         'otu_meta': None,
         'nclust': 4,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': None,
         'tax_table': ['tax_bananas.txt'],
         'rar': 'True',
         'name': ['test'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests')
     }
     batch = Batch(deepcopy(testbiom), inputs)
     rawsums = batch.otu['test'].sum(axis='sample')
     batch.rarefy()
     newsums = batch.otu['test'].sum(axis='sample')
     self.assertGreater(np.mean(rawsums), np.mean(newsums))
示例#13
0
 def test_rarefy_qual(self):
     """The rarefaction function should
     remove samples below a certain read count and then perform rarefaction.
     Are the lowest values of the table equal to the specified rarefication
     number?
     """
     inputs = {
         'biom_file': None,
         'cluster': 'K-means',
         'otu_meta': None,
         'nclust': 4,
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': None,
         'tax_table': ['tax_bananas.txt'],
         'rar': 3,
         'name': ['test'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests')
     }
     batch = Batch(deepcopy(testbiom), inputs)
     batch.rarefy()
     newsums = batch.otu['test'].sum(axis='sample')
     self.assertEqual(np.mean(newsums), 3)
示例#14
0
 def test_min(self):
     """The prevalence function should correctly filter taxa with
     mean abundances below the specified threshold."""
     inputs = {
         'biom_file': None,
         'cluster': ['K-means'],
         'otu_meta': None,
         'nclust': ['4'],
         'otu_table': ['otu_bananas.txt'],
         'prefix': None,
         'sample_data': None,
         'split': None,
         'tax_table': ['tax_bananas.txt'],
         'rar': ['True'],
         'min': 3,
         'prev': None,
         'name': ['test'],
         'fp': (os.path.dirname(massoc.__file__)[:-6] + 'tests')
     }
     batch = Batch(deepcopy(testbiom), inputs)
     rawsums = batch.otu['test'].sum(axis='observation')
     batch.prev_filter(mode='min')
     newsums = batch.otu['test'].sum(axis='observation')
     self.assertEqual((rawsums[0] + rawsums[4]), newsums[3])
示例#15
0
    'tax_table': None,
    'fp': testloc,
    'name': ['test'],
    'otu_table': None,
    'tools': ['spiec-easi'],
    'spiec': None,
    'conet': (os.path.dirname(massoc.__file__)[:-6] + 'tests\\CoNet3'),
    'spar': (os.path.dirname(massoc.__file__)[:-6] + 'tests\\SparCC'),
    'spar_pval': None,
    'spar_boot': None,
    'levels': ['otu', 'order'],
    'prev': ['20'],
    'cores': ['4'],
    'neo4j': [(os.path.dirname(massoc.__file__)[:-6] + 'tests\\neo4j')]
}
netbatch = Nets(Batch(testbiom, inputs))

filenames = list()
for x in inputs['name']:
    filenames.append(netbatch.inputs['fp'][0] + '/' + x + '_otu.hdf5')
    filenames.append(netbatch.inputs['fp'][0] + '/' + x + '_species.hdf5')
    filenames.append(netbatch.inputs['fp'][0] + '/' + x + '_genus.hdf5')
    filenames.append(netbatch.inputs['fp'][0] + '/' + x + '_family.hdf5')
    filenames.append(netbatch.inputs['fp'][0] + '/' + x + '_order.hdf5')
    filenames.append(netbatch.inputs['fp'][0] + '/' + x + '_class.hdf5')
    filenames.append(netbatch.inputs['fp'][0] + '/' + x + '_phylum.hdf5')


class TestNetWrap(unittest.TestCase):
    """Tests netwrap.
    More specifically, checks ability to call network inference tools.
示例#16
0
    'otu_table': None,
    'tools': ['spiec-easi'],
    'spiec': None,
    'conet': None,
    'spar': None,
    'spar_pval': None,
    'spar_boot': None,
    'levels': ['otu', 'order'],
    'prev': ['20'],
    'cores': ['4'],
    'neo4j': os.path.dirname(massoc.__file__)[:-6] + 'tests\\neo4j',
    'address': 'bolt://localhost:7687',
    'username': '******',
    'password': '******'
}
networks = Nets(Batch(deepcopy(testbiom), inputs))
g = nx.Graph()
nodes = ["GG_OTU_1", "GG_OTU_2", "GG_OTU_3", "GG_OTU_4", "GG_OTU_5"]
g.add_nodes_from(nodes)
g.add_edges_from([("GG_OTU_1", "GG_OTU_2"), ("GG_OTU_2", "GG_OTU_5"),
                  ("GG_OTU_3", "GG_OTU_4")])
g["GG_OTU_1"]["GG_OTU_2"]['weight'] = 1.0
g["GG_OTU_2"]["GG_OTU_5"]['weight'] = 1.0
g["GG_OTU_3"]["GG_OTU_4"]['weight'] = -1.0
networks.networks['test_g'] = g

f = nx.Graph()
f.add_nodes_from(nodes)
f.add_edges_from([("GG_OTU_1", "GG_OTU_2"), ("GG_OTU_2", "GG_OTU_3"),
                  ("GG_OTU_3", "GG_OTU_4")])
f["GG_OTU_1"]["GG_OTU_2"]['weight'] = 1.0
示例#17
0
 def generate_cluster_figures(self):
     """Generates figures for diagnostics canvas."""
     from massoc.scripts.batch import Batch
     from sklearn.cluster import KMeans, DBSCAN, SpectralClustering, AffinityPropagation
     from sklearn.mixture import GaussianMixture
     from sklearn.metrics import silhouette_score
     from sklearn.decomposition import PCA
     nums = list(range(2, 5))
     try:
         file = self.file_list.GetSelection()
         file = self.file_list.GetString(file)
         x = 'init'
         biomfile = {x: biom.load_table(file)}
         algo = self.cluster_choice.GetSelection()
         algo = self.cluster_choice.GetString(algo)
         inputs = {'biom_file': [file],
                   'cluster': [algo]}
         normbatch = Batch(biomfile, inputs)
         normbatch = normbatch.normalize_transform(mode='clr')
         norm_table = normbatch.otu[x]
         topscore = 0
         bestcluster = [1] * len(norm_table.ids())
         data = csr_matrix.todense(norm_table.matrix_data)
         data = np.matrix.transpose(data)
         data = PCA(n_components=2).fit_transform(data)
         randomclust = np.random.randint(2, size=len(data))
         sh_score = [silhouette_score(data, randomclust)]
         # K-means clustering, tests 2-4 clusters
         if inputs['cluster'][0] == 'K-means':
             for i in nums:
                 clusters = KMeans(i).fit_predict(data)
                 silhouette_avg = silhouette_score(data, clusters)
                 sh_score.append(silhouette_avg)
             topscore = int(np.argmax(sh_score) + 1)
             bestcluster = KMeans(topscore).fit_predict(data)
         # DBSCAN clustering, automatically finds optimal cluster size
         if inputs['cluster'][0] == 'DBSCAN':
             bestcluster = DBSCAN().fit_predict(data)
             topscore = len(set(bestcluster)) - (1 if -1 in bestcluster else 0)
         # Gaussian Mixture Model (gmm) probability distribution
         if inputs['cluster'][0] == 'Gaussian':
             for i in nums:
                 fit = GaussianMixture(i).fit(data)
                 clusters = fit.predict(data)
                 silhouette_avg = silhouette_score(data, clusters)
                 sh_score.append(silhouette_avg)
             topscore = int(np.argmax(sh_score) + 1)
             bestfit = GaussianMixture(topscore).fit(data)
             bestcluster = bestfit.predict(data)
         # Spectral Clustering
         if inputs['cluster'][0] == 'Spectral':
             for i in nums:
                 clusters = SpectralClustering(i).fit_predict(data)
                 silhouette_avg = silhouette_score(data, clusters)
                 sh_score.append(silhouette_avg)
             topscore = int(np.argmax(sh_score) + 1)
             bestcluster = SpectralClustering(topscore).fit_predict(data)
         # Affinity Propagation clustering
         if inputs['cluster'] == 'Affinity':
             bestcluster = AffinityPropagation().fit_predict(data)
             topscore = len(set(bestcluster)) - (1 if -1 in bestcluster else 0)
         if max(sh_score) < 0.25:
             raise ValueError("Silhouette score too low: please try a different algorithm. "
                              "Your data may not be suitable for clustering.")
         for i in range(topscore):
             mask, = np.where(bestcluster == i)
             for j in mask:
                 norm_table._sample_metadata[j]['cluster'] = inputs['cluster'][0] + '_' + str(i)
         x, y = zip(*data)
         self.prev.scatter(x, y, bestcluster)
         self.canvas1.draw()
     except Exception:
         logger.error("Failed to generate figures. ", exc_info=True)
示例#18
0
文件: main.py 项目: ramellose/massoc
def get_input(inputs, publish=False):
    """
    Takes all input and returns a dictionary of biom files.
    If tab-delimited files are supplied, these are combined
    into a biom file. File names are used as keys.
    This is mostly a utility wrapper, as all biom-related functions
    are from biom-format.org.

    At the moment, rarefaction is performed after sample splitting.
    This means that samples with uneven sequence counts will not
    be rarefied to equal depths.

    All files are written to BIOM files, while a settings file is also written to disk
    for use by other massoc commands.

    :param inputs: Dictionary of inputs.
    :param publish: If True, publishes messages to be received by GUI.
    :return:
    """
    # handler to file
    # construct logger after filepath is provided
    _create_logger(inputs['fp'])
    if inputs['biom_file'] is not None:
        logger.info('BIOM file(s) to process: ' + ", ".join(inputs['biom_file']))
    if inputs['otu_table'] is not None:
        logger.info('Tab-delimited OTU table(s) to process: ' + ", ".join(inputs['otu_table']))
    if inputs['tax_table'] is not None:
        if len(inputs['otu_table']) is not len(inputs['tax_table']):
            logger.error("Add a taxonomy table for every OTU table!", exc_info=True)
            raise ValueError("Add a taxonomy table for every OTU table!")
    if inputs['sample_data'] is not None:
        if len(inputs['otu_table']) is not len(inputs['sample_data']):
            logger.error("Add a sample data table for every OTU table!", exc_info=True)
            raise ValueError("Add a sample data table for every OTU table!")
    if inputs['otu_meta'] is not None:
        if len(inputs['otu_table']) is not len(inputs['otu_meta']):
            logger.error("Add a metadata table for every OTU table!", exc_info=True)
            raise ValueError("Add a metadata table for every OTU table!")
    filestore = {}
    if inputs['biom_file'] is None and inputs['network'] is None:
        if inputs['otu_table'] is None and inputs['network'] is None:
            logger.error("Please supply either a biom file"
                         ", a tab-delimited OTU table or a network!", exc_info=True)
            raise ValueError("Please supply either a biom file"
                             ", a tab-delimited OTU table or a network!")
    # Only process count files if present
    i = 0
    if inputs['name'] is None:
        inputs['name'] = list()
        inputs['name'].append('file_')
    if inputs['biom_file'] is not None:
        try:
            for x in inputs['biom_file']:
                biomtab = load_table(x)
                filestore[inputs['name'][i]] = biomtab
                i += 1
        except Exception:
            logger.error("Failed to import BIOM files.", exc_info=True)
    if inputs['otu_table'] is not None:
        try:
            j = 0  # j is used to match sample + tax data to OTU data
            for x in inputs['otu_table']:
                input_fp = x
                sample_metadata_fp = None
                observation_metadata_fp = None
                obs_data = None
                sample_data = None
                biomtab = load_table(input_fp)
                try:
                    sample_metadata_fp = inputs['sample_data'][j]
                    observation_metadata_fp = inputs['tax_table'][j]
                except TypeError or KeyError:
                    pass
                if sample_metadata_fp is not None:
                    sample_f = open(sample_metadata_fp, 'r')
                    sample_data = MetadataMap.from_file(sample_f)
                    sample_f.close()
                    biomtab.add_metadata(sample_data, axis='sample')
                if observation_metadata_fp is not None:
                    obs_f = open(observation_metadata_fp, 'r')
                    obs_data = MetadataMap.from_file(obs_f)
                    obs_f.close()
                    # for taxonomy collapsing,
                    # metadata variable needs to be a complete list
                    # not separate entries for each tax level
                    for b in list(obs_data):
                        tax = list()
                        for l in list(obs_data[b]):
                            tax.append(obs_data[b][l])
                            obs_data[b].pop(l, None)
                        obs_data[b]['taxonomy'] = tax
                    biomtab.add_metadata(obs_data, axis='observation')
                filestore[inputs['name'][j]] = biomtab
                j += 1
        except Exception:
            logger.warning("Failed to combine input files.", exc_info=True)
    bioms = Batch({'otu': filestore}, inputs)
    # it is possible that there are forbidden characters in the OTU identifiers
    # we can forbid people from using those, or replace those with an underscore
    if inputs['biom_file'] or inputs['otu_table']:
        for name in bioms.otu:
            biomfile = bioms.otu[name]
            taxon_ids = biomfile._observation_ids  # need to be careful with these operations
            taxon_index = biomfile._obs_index      # likely to corrupt BIOM file if done wrong
            new_ids = deepcopy(taxon_ids)
            new_indexes = deepcopy(taxon_index)
            for i in range(0, len(taxon_ids)):
                id = taxon_ids[i]
                new_id = id.replace(" ", "_")
                new_ids[i] = new_id
                new_indexes[new_id] = new_indexes.pop(id)
            biomfile._observation_ids = new_ids
            biomfile._obs_index = new_indexes
            bioms.otu[name] = biomfile
        logger.info('Collapsing taxonomy... ')
        bioms.collapse_tax()
        if inputs['cluster'] is not None:
            if publish:
                pub.sendMessage('update', msg='Clustering BIOM files...')
            logger.info('Clustering BIOM files... ')
            bioms.cluster_biom()
        if inputs['split'] is not None and inputs['split'] is not 'TRUE':
            bioms.split_biom()
        if inputs['min'] is not None:
            if publish:
                pub.sendMessage('update', msg='Setting minimum mean abundance...')
            logger.info('Removing taxa below minimum count... ')
            bioms.prev_filter(mode='min')
        if inputs['prev'] is not None:
            if publish:
                pub.sendMessage('update', msg='Setting prevalence filter...')
            logger.info('Setting prevalence filter... ')
            bioms.prev_filter(mode='prev')
        if inputs['rar'] is not None:
            if publish:
                pub.sendMessage('update', msg='Rarefying counts...')
            logger.info('Rarefying counts... ')
            bioms.rarefy()
    bioms.inputs['procbioms'] = dict()
    if inputs['biom_file'] or inputs['otu_table']:
        if 'otu' not in bioms.inputs['levels']: # add otu level always
            bioms.inputs['procbioms']['otu'] = dict()
            for name in bioms.inputs['name']:
                biomname = bioms.inputs['fp'] + '/' + name + '_' + 'otu' + '.hdf5'
                bioms.inputs['procbioms']['otu'][name] = biomname
        for level in bioms.inputs['levels']:
            bioms.inputs['procbioms'][level] = dict()
            for name in bioms.inputs['name']:
                biomname = bioms.inputs['fp'] + '/' + name + '_' + level + '.hdf5'
                bioms.inputs['procbioms'][level][name] = biomname
        all_bioms = {**bioms.otu, **bioms.genus, **bioms.family, **bioms.order,
                     **bioms.class_, **bioms.phylum}
        for biomfile in all_bioms:
            if all_bioms[biomfile].shape[0] == 1:
                logger.error("The current preprocessing steps resulted in BIOM files with only 1 row.", exc_info=True)
    if inputs['network'] is not None:
        if publish:
            pub.sendMessage('update', msg='Checking previously generated networks...')
        logger.info('Checking previously generated networks...')
        filelist = deepcopy(inputs['network'])
        for file in filelist:
            network = _read_network(file)
            nodes = len(network.nodes)
            edges = len(network.edges)
            logger.info("This network has " + str(nodes) + \
                           " nodes and " + str(edges) + " edges.")
            weight = nx.get_edge_attributes(network, 'weight')
            if len(weight) > 0:
                logger.info('This is a weighted network.')
            else:
                logger.info('This is an unweighted network.')
    try:
        if inputs['biom_file'] or inputs['otu_table']:
            bioms.write_bioms()
            logger.info('BIOM files written to disk.  ')
    except Exception:
        logger.warning('Failed to write BIOM files to disk.  ', exc_info=True)
    write_settings(bioms.inputs)
    logger.info('Settings file written to disk.  ')
示例#19
0
文件: main.py 项目: ramellose/massoc
def run_neo4j(inputs, publish=False):
    """
    Starts and carries out operations on the Neo4j database.

    :param inputs: Dictionary of inputs.
    :param publish: If True, publishes messages to be received by GUI.
    :return:
    """
    _create_logger(inputs['fp'])
    # overwritten settings should be retained
    old_inputs = read_settings(inputs['fp'] + '/settings.json')
    # handler to file
    # check if password etc is already there
    if 'username' in old_inputs:
        logins = dict((k, old_inputs[k]) for k in ('username', 'password', 'address', 'neo4j'))
    old_inputs.update(inputs)
    inputs = old_inputs
    if 'pid' in inputs:
        existing_pid = pid_exists(inputs['pid'])
    else:
        existing_pid = False
    if not inputs['neo4j']:
        inputs.update(logins)
    checks = str()
    if inputs['job'] == 'start':
        if not existing_pid:
            start_database(inputs, publish)
            existing_pid = True
        else:
            logger.info("Database is already running.  ")
    elif inputs['job'] == 'quit':
        if not existing_pid:
            logger.info("No database open.  ")
        else:
            try:
                if publish:
                    pub.sendMessage('update', msg='Getting PID...')
                # there is a lingering Java process that places a lock on the database.
                # terminating the subprocess does NOT terminate the Java process,
                # so the store lock has to be deleted manually.
                # This is different for Linux & Windows machines and may not be trivial
                # however, PID solution may be platform-independent
                # CURRENT SOLUTION:
                # get parent PID of subprocess
                # use psutil to get child PIDs
                # kill child PIDs too
                parent_pid = inputs['pid']
                parent = Process(parent_pid)
                children = parent.children(recursive=True)
                for child in children:
                    child.kill()
                # apparently killing the children also kills the parent
            except Exception:
                logger.warning("Failed to close database.  ", exc_info=True)
    elif inputs['job'] == 'clear':
        if not existing_pid:
            start_database(inputs, publish)
            existing_pid = True
        try:
            if publish:
                pub.sendMessage('update', msg='Clearing database...')
            importdriver = ImportDriver(user=inputs['username'],
                                        password=inputs['password'],
                                        uri=inputs['address'], filepath=inputs['fp'])
            importdriver.clear_database()
            importdriver.close()
        except Exception:
            logger.warning("Failed to clear database.  ", exc_info=True)
    elif inputs['job'] == 'write':
        if not existing_pid:
            start_database(inputs, publish)
            existing_pid = True
        try:
            if publish:
                pub.sendMessage('update', msg='Accessing database...')
            importdriver = ImportDriver(user=inputs['username'],
                                        password=inputs['password'],
                                        uri=inputs['address'], filepath=inputs['fp'])
            importdriver.export_network(path=inputs['fp'])
            importdriver.close()
        except Exception:
            logger.warning("Failed to write database to graphml file.  ", exc_info=True)
    elif inputs['job'] == 'cyto':
        if not existing_pid:
            start_database(inputs, publish)
            existing_pid = True
        try:
            if publish:
                pub.sendMessage('update', msg='Accessing database...')
            importdriver = ImportDriver(user=inputs['username'],
                                        password=inputs['password'],
                                        uri=inputs['address'], filepath=inputs['fp'])
            importdriver.export_cyto()
            importdriver.close()
        except Exception:
            logger.warning("Failed to export networks to Cytoscape.  ", exc_info=True)
    else:
        if not existing_pid:
            start_database(inputs, publish)
            existing_pid = True
        if publish:
            pub.sendMessage('update', msg='Uploading files to database...')
        filestore = None
        if inputs['procbioms']:
            filestore = read_bioms(inputs['procbioms'])
        # ask users for additional input
        bioms = Batch(filestore, inputs)
        bioms = Nets(bioms)
        for file in inputs['network']:
            network = _read_network(file)
            bioms.add_networks(network, file)
        importdriver = None
        sleep(12)
        importdriver = ImportDriver(user=inputs['username'],
                                    password=inputs['password'],
                                    uri=inputs['address'], filepath=inputs['fp'])
        # importdriver.clear_database()
        try:
            # pub.sendMessage('update', msg='Uploading BIOM files...')
            logger.info("Uploading BIOM files...")
            itemlist = list()
            for level in inputs['procbioms']:
                for item in inputs['procbioms'][level]:
                    name = inputs['procbioms'][level][item]
                    biomfile = load_table(name)
                    importdriver.convert_biom(biomfile=biomfile, exp_id=name)
                    itemlist.append(name)
            checks += 'Successfully uploaded the following items and networks to the database: \n'
            for item in itemlist:
                checks += (item + '\n')
            checks += '\n'
            logger.info(checks)
        except Exception:
            logger.warning("Failed to upload BIOM files to Neo4j database.  ", exc_info=True)
        try:
            # pub.sendMessage('update', msg='Uploading network files...')
            logger.info('Uploading network files...  ')
            for item in bioms.networks:
                network = bioms.networks[item]
                # try to split filename to make a nicer network id
                subnames = item.split('/')
                if len(subnames) == 1:
                    subnames = item.split('\\')
                name = subnames[-1].split('.')[0]
                importdriver.convert_networkx(network=network, network_id=name, mode='weight')
                itemlist.append(item)
        except Exception:
            logger.warning('Unable to upload network files to Neo4j database. ', exc_info=True)
            checks += 'Unable to upload network files to Neo4j database.\n'
        if publish:
            pub.sendMessage('database_log', msg=checks)
        importdriver.close()
    logger.info('Completed database operations!  ')
    write_settings(inputs)