示例#1
0
def escapeVelocity(n=20, T=100):
    """
    Code to plot different inital velocities in the v_y direction
        Args: 
            n: (int) Number of orbits/escapes
            T: (float/int) Total time to run over 
    """
    v = np.linspace(2 * np.pi, 3 * np.pi, n, endpoint=True)

    T = 100
    dt = -4
    N = np.log10(T) - dt

    orbits = []
    for i in range(n):
        system_dict = {
            "Sun": [0, 0, 0, 0, 0, 0],
            "Earth": [1, 0, 0, 0, v[i], 0]
        }  # Store the different velocities
        setInitialConditions(f"escape_init_{i}.dat", system_dict)
        simulate(N=N,
                 dt=dt,
                 Nwrite=1000,
                 sys=f"escape_init_{i}.dat",
                 out=f"escape_{i}.dat",
                 fixSun=True,
                 quiet=True)
        system = read_data_file(f"escape_{i}.dat")
        orbits.append(system["Earth"].r)

    NoOfColors = n
    colors = list(Color("cyan").range_to(Color("orange"), NoOfColors))
    colors = [color.get_rgb() for color in colors]

    vticks = [round(v_i, 2) for v_i in v]

    fig, ax = plt.subplots(1, 1)
    ax.set_facecolor('black')
    ax.set_xlabel("x [AU]", fontsize=15)
    ax.set_ylabel("y [AU]", fontsize=15)
    ax.set(xlim=(-50, 2), ylim=(-26, 26))
    for i, r in enumerate(orbits):
        ax.plot(r[0], r[1], color=colors[i], alpha=0.7)

    cmap = mpl.colors.ListedColormap(colors)
    norm = mpl.colors.Normalize(vmin=v[0], vmax=v[-1])
    cbar = ax.figure.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),
                              ax=ax,
                              orientation='vertical',
                              ticks=vticks)
    cbar.ax.set_ylabel(r'   $v_y$', rotation=0, fontsize=17)
    cbar.ax.tick_params(labelsize=13)
    ax.tick_params(axis='both', which='major', labelsize=12)
    ax.scatter(0, 0, c="yellow", s=2)
    ax.text(0, 15.5, '               $v_{esc}$', color="black", fontsize=17)
    ax.text(-49, 6.5, "$v_{esc}=8.89$ [AU/yr]", color="white", fontsize=14)
    ax.arrow(-43, 8.5, 4, 4, ec="white", fc="white", head_width=1)
    plt.show()
示例#2
0
def forward_simulation(dt, N, system_dict, GR=True):
    # forwards the simulation according to dt and N
    # only initial and final datapoints are stored
    setInitialConditions("precession_init.dat", system_dict)
    simulate(N,
             dt,
             Nwrite=2,
             GR=GR,
             sys="precession_init.dat",
             out="precession.dat",
             quiet=True)
示例#3
0
def run_simulation(dt, T, v):
    # runs a single escape simulation and returns bool whether Earth escaped
    N = np.log10(T) - dt  # log10 of N

    system_dict = {"Sun": [0, 0, 0, 0, 0, 0], "Earth": [1, 0, 0, 0, v, 0]}

    setInitialConditions("escape_init.dat", system_dict)
    simulate(N=N,
             dt=dt,
             Nwrite=2,
             sys="escape_init.dat",
             out="escape.dat",
             fixSun=True,
             quiet=True)

    return check_escape()
示例#4
0
def findPrecession(dt, GR=False, newsim=False):
    # Runs 100 one-year simulations adding up to 100 years forward, and finds the final perihelion angle.

    start = time.time()  # timer

    # setting initial conditions for Mercury-Sun system with perihelion along x-axis
    system_dict = {
        "Sun": [0, 0, 0, 0, 0, 0],
        "Mercury": [0.3075, 0, 0, 0, 12.44, 0]
    }
    N = -dt  # log10 of N, results in one-year simulation

    if newsim:  # simulates from scratch
        for i in range(100):
            # simulates 1 years at a time
            forward_simulation(dt, N, system_dict, GR=GR)
            print(dt, i, GR)  # just to keep track of simulations
            system_dict = read_final_state()

        # finally simulates just over one orbit, saving all the points to find the perihelion angle
        setInitialConditions("precession_orbit_init.dat", system_dict)
        N = np.log10(
            0.3) - dt  # simulates 0.3 of a year, which is just over one orbit
        print("final")
        GR_string = {True: "GR", False: "CLASSIC"}[GR]
        simulate(N,
                 dt,
                 Nwrite=int(1e6),
                 GR=GR,
                 sys="precession_orbit_init.dat",
                 out=f"prec/final_{dt}_{GR_string}.dat",
                 quiet=True)

    # Gets the precession of the century simulated and prints
    precession_per_century = getPerihelionAngle(dt, GR=GR)

    print(
        f"The precession over one century (GR: {GR}) was {precession_per_century} arcseconds."
    )
    print(f"Took {time.time()-start:.1f} seconds to run")
    return precession_per_century
示例#5
0
def fullSystem():
    N = 7
    dt = np.log10(10**(-5) * 25)
    Nwrite = int(1e4)

    bodynames = [
        "Sun", "Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",
        "Uranus", "Neptune", "Pluto"
    ]
    bodycolors = [
        "yellow", "#86511D", "#F7C3F4", "#0EEB58", "red", "orange", "#FCDB0A",
        "aqua", "blue", "grey"
    ]
    gic("fullsystem.dat", bodies=bodynames, fixedCoM=True, date="2018-03-14")
    simulate(N=N,
             dt=dt,
             Nwrite=Nwrite,
             sys="fullsystem.dat",
             out="fullsystem.out")

    system = read_data_file("fullsystem.out")

    with plt.style.context("seaborn-darkgrid"):
        fig = plt.figure(figsize=(13, 8), dpi=130)
        ax = fig.gca(projection='3d')

        for i, bodyname in enumerate(bodynames):
            body = system[bodyname]
            r = body.r
            v = body.v

            h = np.cross(r, v, axis=-2)
            inc = np.mean(
                np.rad2deg(np.arccos(h[-1, :] / np.linalg.norm(h, axis=-2))))
            if i != 0:
                print(f"Inclination {bodyname}: {round(inc,3)} degr")
            x, y, z = body.r[0, :], body.r[1, :], body.r[2, :]

            ax.plot(x, y, z, lw=1, color=bodycolors[i], alpha=0.65, zorder=-1)
            ax.scatter(x[-1],
                       y[-1],
                       z[-1],
                       color=bodycolors[i],
                       zorder=10,
                       s=18)
            ax.text(x[-1],
                    y[-1],
                    z[-1],
                    bodyname,
                    color=Color(bodycolors[i], luminance=0.95).rgb,
                    fontsize=12,
                    zorder=1000)

        ax.set_axis_off()
        ax.set_facecolor("black")

        ax.set_title("All bodies over 25 years", color="white")
        lim = 20  # plot dimensions (AU)
        zscale = 20  # scaling of z-axis to show inclination
        ax.set_xlim(-lim, lim)
        ax.set_ylim(-lim, lim)
        ax.set_zlim(-lim / zscale, lim / zscale)
        plt.show()
示例#6
0
def radialDistance(dt=-4, T=20):
    """
	Plot the radial deviation from Earths orbit without Jupiter
		Args:
			dt: (float) step length in years
			T: (float/int) total time to run the simulation over
	"""
    scale_j_mass = [1, 10, 100,
                    1000]  # Hard code in the different scaled masses

    N = np.log10(T) - dt
    N_write = 10000

    # First run without Jupiter present
    initFilenameNoJ = "No_jupiter.dat"
    outFilenameNoJ = f"No_jupiter_{T}_{-dt}.dat"

    if not initFilenameNoJ in os.listdir("initData"):
        getInitialCondition(initFilenameNoJ, ["Sun", "Earth"],
                            date="2018-03-14")
    if not outFilenameNoJ in os.listdir("data"):
        simulate(N=N,
                 dt=dt,
                 Nwrite=N_write,
                 sys=initFilenameNoJ,
                 out=outFilenameNoJ,
                 fixSun=True,
                 quiet=True)

    system = read_data_file(outFilenameNoJ)
    rE_no_j = np.linalg.norm(
        system["Earth"].r,
        axis=0)  # Earths distance from the sun without Jupiter

    initFilenames = [f"SEJ_{scale}.dat" for scale in scale_j_mass]
    outFilenames = [f"SEJ_{T}_{scale}_{N_write}.dat" for scale in scale_j_mass]

    rE = [
    ]  # To store the distances with Jupiter present at different scaled masses
    for i in range(len(scale_j_mass)):
        if not initFilenames[i] in os.listdir("initData"):
            getInitialCondition(initFilenames[i], ["Sun", "Earth", "Jupiter"],
                                scaled_mass={"Jupiter": scale_j_mass[i]})

        if not outFilenames[i] in os.listdir("data"):
            simulate(N=N,
                     dt=dt,
                     Nwrite=N_write,
                     sys=initFilenames[i],
                     out=outFilenames[i],
                     fixSun=True,
                     quiet=True)

        system = read_data_file(outFilenames[i])
        R = np.linalg.norm(system["Earth"].r, axis=0)
        rE.append(R)

    t = np.linspace(0, T, N_write, endpoint=True)
    with sns.axes_style("darkgrid"):
        fig, ax = plt.subplots()
        for R, lab in zip(rE, scale_j_mass):
            diff = rE_no_j - R
            if lab == 1:
                ax.plot(t, diff, label="$M_J$")
            else:
                ax.plot(t, diff, label=f"{lab}$M_J$")

            diff = np.abs(diff)
            avg_diff = np.mean(diff)
            std_diff = np.mean(diff)
            print(
                f"Jupiter mass = {lab:5}Mj, Avrage deviation = {avg_diff:.5E}, std = {std_diff:.5E}"
            )
        ax.tick_params(axis='both', which='major', labelsize=13)
        ax.set_xlabel("Time [yr]", fontsize=14)
        ax.set_ylabel("Deviation from orbit without Jupiter [AU]", fontsize=14)
        ax.legend(loc='upper center',
                  bbox_to_anchor=(0.5, 1.16),
                  ncol=4,
                  fancybox=True,
                  shadow=True,
                  fontsize=14)
    plt.show()
示例#7
0
def sunEarthJupiter(dt=-4, T=15, jupiter_scale=1000):
    """
	Plot the Sun-Earth-Jupiter system
		Args:
			dt: (float) step length in AU/yr
			T: (float/int) how long to run the simulation in years
			jupiter_scale: (int/float) In case you want to scale Jupiters mass up/down
	"""
    N = np.log10(T) - dt
    N_write = 10000

    initFilename = f"SEJ_{jupiter_scale}.dat"
    outFilename = f"SEJ_{T}_{jupiter_scale}_{N_write}.dat"
    bodies = ["Sun", "Earth", "Jupiter"]

    scaled_mass = {"Jupiter": jupiter_scale}
    if not initFilename in os.listdir("initData"):
        getInitialCondition(initFilename,
                            bodies,
                            fixedCoM=False,
                            scaled_mass=scaled_mass,
                            date="2018-03-14")

    if not outFilename in os.listdir("data"):
        simulate(N=N,
                 dt=dt,
                 Nwrite=1000,
                 sys=initFilename,
                 out=outFilename,
                 fixSun=True,
                 quiet=True)

    system = read_data_file(outFilename)
    rS = system["Sun"].r
    rE = system["Earth"].r - rS
    rJ = system["Jupiter"].r - rS

    l = np.max(rJ) + np.max(
        rJ) / 10  # Make plot just a little bigger than Jupiters orbit

    bodynames = ["Earth", "Jupiter"]
    bodycolors = ["#0EEB58", "orange"]

    fig = plt.figure()
    fig.set_facecolor('black')
    ax = fig.add_subplot(111, projection='3d')
    ax.set_facecolor('black')
    ax.grid(False)
    ax.w_xaxis.set_pane_color((0.0, 0.0, 0.0, 0.0))
    ax.w_yaxis.set_pane_color((0.0, 0.0, 0.0, 0.0))
    ax.w_zaxis.set_pane_color((0.0, 0.0, 0.0, 0.0))
    ax.set(xlim=(-l, l), ylim=(-l, l), zlim=(-l, l))
    ax.scatter(0, 0, c="yellow", label="Sun")
    ax.plot(rE[0, 1:], rE[1, 1:], rE[2, 1:], c="#0EEB58", label="Earth")
    ax.plot(rJ[0], rJ[1], rJ[2], c="orange", label="Jupiter")
    ax.legend(loc='upper center',
              bbox_to_anchor=(0.5, 1.1),
              ncol=3,
              fancybox=True,
              shadow=True,
              fontsize=15)
    plt.show()
示例#8
0
def circularOrbit(dt=0.0001, T_end=1, method="verlet", N_write=1000):
	"""
	Makes plot of stable Sun/Earth orbit
	Sun at origin no init vel, earth x = 1 AU vx = 2pi * AU/yr

	Args:
		dt: (float) time step in years
		T_end: (int/float) end time in years
		method: (string) "euler" or "verlet"
		N_write: (int) number of points to write to file
	"""
	N = int(T_end/dt)
	if N_write == None:
		N_write = N

	body_dict = {"Sun": [0,0,0,0,0,0],
				 "Earth": [1,0,0,0,2*np.pi,0]} # Initial conditions
	
	initFilename = "SunEarthStable_init.dat"
	outFilename = "SunEarthStable_" + "_".join([str(method), str(T_end), str(N), str(N_write)])  + ".dat" # Make filenames

	check_init(initFilename, body_dict) 
	setInitialConditions(initFilename, body_dict)

	exists = has_data(outFilename)
	N = np.log10(N)
	dt = np.log10(dt)
	if not exists: # If the datafiles are missing, make them
		simulate(N=N, dt = dt, method=method, Nwrite=N_write, sys=initFilename, out=outFilename, fixSun=True, quiet=True)

	
	system = read_data_file(outFilename) # Reads the data
	r = system["Earth"].r

	Ek, Ep = energy(system["Earth"]) # Calculate energy
	Ek_std, Ep_std = np.std(Ek), np.std(Ep)
	Ek_mean, Ep_mean = np.mean(Ek), np.mean(Ep)
	
	if system["method"] == 0:
		method = "euler"
	if system["method"] == 1:
		method = "verlet"

	print(f"Method = {method}, dt = {dt:E}, N={N:E}, T_end = {T_end}")
	print(f"Ek initial = {Ek[0]:.4f}, Ep initial = {Ep[0]:.4f}")
	print(f"Ek (mean) = {Ek_mean:.4f}, std = {Ek_std:.4E}, relative = {(Ek_std/Ek_mean):.4E}")
	print(f"Ep (mean) = {Ep_mean:.4f}, std = {Ep_std:.4E}, relative = {(-Ep_std/Ep_mean):.4E}")

	T = np.linspace(0, T_end, N_write, endpoint=True)
	with sns.axes_style("darkgrid"):
		fig, ax = plt.subplots()
		l = 1.5
		ax.set(xlim=(-l,l), ylim=(-l,l))
		ax.tick_params(axis='both', which='major', labelsize=13)
		ax.axis("equal")
		ax.set_xlabel("x [AU]", fontsize=13)
		ax.set_ylabel("y [AU]", fontsize=13)

		ax.scatter(0,0, c="r", label="Sun")
		ax.plot(r[0], r[1], c="b", label="Earth")

		ax.legend(fontsize=13)
		plt.show()
示例#9
0
def error(dt_start=3, dt_end=7, n_tests=20):
	"""
	Making a plot of the relative error in the total energy of the two algorithms
		Args:
			dt_start: (int) -log10 of what dt to start at
			dt_end: (int) -log10 of what dt to end at 
			n_tests: (int) number of tests to preform between dt_start and dt_end
	"""
	dt = np.linspace(dt_start, dt_end, n_tests, endpoint=True)*-1 
	N = -dt	

	methods = ["euler", "verlet"]

	initFilename = "SunEarthStable_init.dat"

	outFilenames = []
	for method in methods:
		for i in range(n_tests):
			outFilenames.append(f"SunEarthStable_{method}_{dt_start}_{dt_end}_{i+1}.dat") 

	body_dict = {"Sun": [0,0,0,0,0,0],
				 "Earth": [1,0,0,0,2*np.pi,0]}
	
	setInitialConditions(initFilename, body_dict)
	check_init(initFilename, body_dict)
	exists = has_data(outFilenames)
	i = 0
	tot = 2*n_tests
	if not exists: # If files are missing, create them
		for method in methods:
			for N_, dt_ in zip(N,dt):
				simulate(N=N_, dt = dt_, method=method, Nwrite=2, sys=initFilename, out=outFilenames[i], fixSun=True, quiet=True)
				i += 1
				print(f"{method}, log10(dt)={dt_:.2f}, log10(N)={N_:.2f}, {(i*100/tot):.1f}%") # Again, migth take a while

	N = 10**N
	dt = 10**dt
	systems = []
	eulerError = []
	verletError = []

	for outfile in outFilenames: # Sort through files and place the error in euler and verlet
		system = read_data_file(outfile)
		Ek, Ep = energy(system["Earth"])
		
		E = Ek+Ep
		error = np.abs((E[0]-E[-1])/E[0])
	
		if system["method"] == 0:
			eulerError.append(error)
		if system["method"] == 1:
			verletError.append(error)
	
	with sns.axes_style("darkgrid"):
		fix, ax = plt.subplots()
		ax.invert_xaxis()
		ax.tick_params(axis='both', which='major', labelsize=13)
		ax.set_xlabel("$h$ [yr]", fontsize=14)
		ax.set_ylabel("Relative error of $E_{tot}$", fontsize=14)
		ax.set(xscale="log", yscale="log")
		ax.scatter(dt, eulerError, label="$E_{tot}$ Euler")
		ax.scatter(dt, verletError, label="$E_{tot}$ Verlet")
		slope, const, r_value, p_value, std_err = stats.linregress(np.log10(dt), np.log10(eulerError))
		ax.plot(dt, 10**const * dt**slope, c="k" ,linestyle="dashed",\
				label=f"s = {slope:.3f}$\pm${std_err:.3f} \n$R^2$ = {(r_value**2):.5f}")
		
	ax.legend(fontsize=13, loc=6)
	plt.show()
示例#10
0
def benchmark(N_start=2, N_end=7, n_tests=50):
	"""
	Preform a timing of the two algorithms and make a log-log plot
		Args:
			N_start: (int) log10 of the number of integration steps to start at
			N_end: (int) log10 of the number of integration steps to end at
			n_tests: (int) number of test between N_start and N_end
	"""
	N = np.log10(np.logspace(N_start, N_end, n_tests, endpoint=True, dtype=int))

	methods = ["euler", "verlet"]

	initFilename = "SunEarthStable_init.dat"

	outFilenames = []
	for method in methods:
		for i in range(n_tests):
			outFilenames.append(f"SunEarthStable_{method}_{N_start}_{N_end}_{i+1}.dat") 

	body_dict = {"Sun": [0,0,0,0,0,0],
				 "Earth": [1,0,0,0,2*np.pi,0]}
	
	check_init(initFilename, body_dict)

	exists = has_data(outFilenames)

	i = 0
	tot = 2*n_tests 
	if not exists: # If datafiles are missing, make them
		for method in methods:
			for n_ in N:
				dt_ = -n_
				simulate(N=n_, dt = dt_, method=method, Nwrite=2, sys=initFilename, out=outFilenames[i], fixSun=True, quiet=True)
				i += 1
				print(f"Done {method}, dt = {n_}, {(i*100/tot):.2f}%") # It takes a while... good to know where your at
	eulerTime = []
	verletTime = []

	for outfile in outFilenames: # Sort through files and place the time in euler and verlet
		system = read_data_file(outfile)
		
		if system["method"] == 0:
			eulerTime.append(system["time"])
		if system["method"] == 1:
			verletTime.append(system["time"])

	eulerTime = np.array(eulerTime) # For easier handling
	verletTime = np.array(verletTime)
	with sns.axes_style("darkgrid"):
		fig, ax = plt.subplots()
		ax.set(xscale="log", yscale="log")
		ax.tick_params(axis='both', which='major', labelsize=13)
		ax.set_xlabel(xlabel="N", fontsize=15)
		ax.set_ylabel(ylabel="Time taken [s]", fontsize=15)
		ax.scatter(N, eulerTime, label="Euler")
		ax.scatter(N, verletTime, label="Verlet")

		# Only linfit if standard params (as some points have to be excluded)
		if all([val is benchmark.__defaults__[i] for i, val in enumerate([N_start,N_end,n_tests])]):
			sE, eE = 25, len(N) # What points to fit Euler
			sV, eV = 25, len(N) # What point to fit Verlet

			slopeE, constE, r_valueE, p_valueE, std_errE = stats.linregress(np.log10(N[sE:eE]), np.log10(eulerTime[sE:eE]))

			# Linfit for Verlet
			slopeV, constV, r_valueV, p_valueV, std_errV = \
			stats.linregress(np.log10(N[sV:eV]), np.log10(verletTime[sV:eV]))

			# Plot Euler and Verlet linfit
			ax.plot(N[sE:eE], 10**constE * N[sE:eE]**slopeE, c="red",\
					label=f"Slope Euler = {slopeE:.3f}$\pm${std_errE:.3f} \n $R^2$ = {(r_valueE**2):.4f}", markersize=3)
			ax.plot(N[sV:eV], 10**constV * N[sV:eV]**slopeV, c="k" ,\
					label=f"Slope Verlet = {slopeV:.3f}$\pm${std_errV:.3f} \n $R^2$ = {(r_valueV**2):.4f}", markersize=3)
			
	ax.legend(fontsize=13)
	plt.show()
示例#11
0
def ellipticalOrbits(dt=0.0001, T_end=10, n_v = 4, method="verlet", N_write=10000):
	"""
	Makes plot of different elliptical orbits
		Args: 
			dt: (float) Step length in yr
			T_end: (int/float) Total time to run the simulation
			n_v: (int) Number of orbits in the range v_y = [pi, 5pi/2]
			method: (string) Verlet or Euler
			N_write: (int) How many points to write
	"""
	N = int(T_end/dt)
	if N_write == None:
		N_write = N

	VY = np.linspace(np.pi, 5*np.pi/2, n_v, endpoint=True) # Array holding different initial velocities in the y-direction

	filenames = [f"SunEarthEllip_{n_v}_{i}_{T_end}.dat" for i in range(n_v)] # Storing filenames
	
	for i in range(n_v):
		body_dict = {"Sun": [0,0,0,0,0,0],
				    "Earth": [1,0,0,0,VY[i],0]}
		check_init(filenames[i], body_dict)
		
	exists = has_data(filenames)
	dt = np.log10(dt)
	N = np.log10(N)
	if not exists:
		for i in range(n_v):
			simulate(N=N, dt = dt, method=method, Nwrite=N_write, sys=filenames[i], out=filenames[i], fixSun=True, quiet=True)

	labs = ["$\pi$", "$3\pi/2$", "$2\pi$", "$5\pi/2$"] # Only true if standard parameters are used

	with sns.axes_style("darkgrid"):
		fig, ax = plt.subplots()
		ax.set_xlabel("x [AU]", fontsize=14)
		ax.set_ylabel("y [AU]", fontsize=14)
		ax.axis("equal")
		for i in range(n_v):
			system = read_data_file(filenames[i])
			rE = system["Earth"].r
			ax.plot(rE[0], rE[1], label=f"$v_y=${labs[i]} AU/yr")

		ax.scatter(0,0, c="r")
		ax.tick_params(axis='both', which='major', labelsize=13)
		ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.22),
          ncol=2, fancybox=True, shadow=True, fontsize=13)
		plt.show()


	with sns.axes_style("darkgrid"):
		fig, ax = plt.subplots()
		T = np.linspace(0, T_end, N_write, endpoint=True)
		ax.set_xlabel("Time [yr]", fontsize=14)
		ax.set_ylabel("Relative error of |$\ell$|", fontsize=14)
		for i in range(n_v):
			system = read_data_file(filenames[i])
			L = angular_momentum(system["Earth"])
			L = np.abs((L[0]-L)/L[0])
			ax.plot(T, L, label=f"$v_y=${labs[i]}")
		ax.tick_params(axis='both', which='major', labelsize=13)
		ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.18),
          ncol=2, fancybox=True, shadow=True, fontsize=13)
	plt.show()