def arquitetura(tam_entrada, tam_hidden, tam_saida): m = [] matriz_hidden = mat_aleatoria(-1,1,tam_hidden,tam_entrada) # cada linha representa um neuronio da camada escondida matriz_saida = mat_aleatoria(-1,1, tam_saida, tam_hidden) # cada linha representa um neuronio da camada de saida m.append(matriz_hidden) m.append(matriz_saida) return m
def gpa(): g = 0 civ = [] c = 0 math = [] m = 0 lang = [] l = 0 sci = [] s = 0 civn = input("how many humanitities do you take?") for i in range(0, civn): civ.append(f(raw_input("whats your civ grade?"))) mathn = input("how many maths do you take?") for j in range(0, mathn): math.append(f(raw_input("whats your math grade?"))) langn = input("how many languages do you take?") for k in range(0, langn): lang.append(f(raw_input("whats your language grade?"))) scin = input("how many sciences do you take?") for n in range(0, scin): sci.append(f(raw_input("whats your science grade?"))) for ii in range(0, len(civ)): c = c + civ[ii] for jj in range(0, len(math)): m = m + math[jj] for kk in range(0, len(lang)): l = l + lang[kk] for nn in range(0, len(sci)): s = s + sci[nn] g = (c + m + l + s) / (len(civ) + len(math) + len(lang) + len(sci)) print g
def read_data(fobj): reader = csv.DictReader(fobj, delimiter=',') math = [] read = [] write = [] for line in reader: math.append(int(line['Math'])) read.append(int(line['Reading'])) write.append(int(line['Writing'])) return math, read, write
def get_M(W, X, y_list): """ Calculate the predict values and return missclassified data points set M """ M = [] for i, xt in enumerate(X): pred_val = cal_h_W_Xt(W, xt) if not pred_val == y_list[i]: M.append(xt) return M
def matriz(arq): # inicializa a matriz start = "" m = [] i = 0 for lin in arq: if (i > 5): # descarta as 5 linhas iniciais m.append([float(x) for x in lin.split()]) else: start += str(lin).replace("b'", "").replace("\\n'", "\n") i += 1 return m, start # retorna um array
def GP_model_test(sample_x, sample_y, sample_std, test_x, gamma, samples): sample_x = np.array(sample_x) cov_x = RBF_ker(sample_x, sample_x, gamma) d = np.diag(np.array(sample_std)**2) lower_cholesky = cholesky(cov_x + d, True) weighted_sample_y = cho_solve((lower_cholesky, True), sample_y) cov_te_sam = RBF_ker(test_x, sample_x, gamma) m = [] for i in cov_te_sam: m.append(cho_solve((lower_cholesky, True), i)) cov = RBF_ker(test_x, test_x, gamma) - np.dot(cov_te_sam, np.array(m).T) mean = np.dot(cov_te_sam, weighted_sample_y) N = np.random.multivariate_normal(mean, cov, samples) return N
def math(): b, c = entry1.get(), entry2.get() b, c = float(b), float(c) x = float((b**2) - (4 * c)) x = s(x) x = x / 2 new = float((b**2) - (4 * c)) new = s(new) new = (-b) - new new = new / 2 math = [] math.append(x) math.append(new) answer.delete(0, END) answer.insert(0, math)
def continue_math(count, yt, framerate): x = [] math = [] for i, data in enumerate(count): x.append(data) if (i + 1) % 2 == 0: y1 = yt[x[0]:x[1]] yf1 = abs(fft(y1)) / len(y1) yf2 = yf1[range(int(len(y1) / 2))] math_ = catch_number(yf2, framerate, x[1] - x[0]) x = [] if math_ == None: continue math.append(math_) return math
def math(): b = entry1.get() b = float(b) c = entry2.get() c = float(c) x = float((b**2) - (4 * c)) x = a(x) x = (-b) + x x = x / 2 x1 = float((b**2) - (4 * c)) x1 = a(x1) x1 = (-b) - x1 x1 = x1 / 2 math = [] math.append(x) math.append(x1) answer.delete(0, END) answer.insert(0, math)
import math #low=[] #high=[] #var=0 df = pd.read_excel('std4.xlsx') #with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also #print(df) #for i in range(len(df)) : #print(df.loc[i, "Sess1"], df.loc[i, "Subjects"]) #print(df.) math = [] sum_math = 0 i = 0 j = 0 while i < len(df): math.append(df.iloc[i, 8]) sum_math = sum_math + math[j] i = i + 5 j = j + 1 #print(math,end=" ") #print(sum_math) i = 1 j = 0 phy = [] sum_phy = 0 while i < len(df): phy.append(df.iloc[i, 8]) sum_phy = sum_phy + phy[j] i = i + 5 j = j + 1 #print(phy)
a0 = a0 + dela[0] a1 = a1 + dela[1] #monte carlo using computer generated random numbers #iterations=int(input("number of iterations: ")) iterations = 1000 cir = 0 sq = 0 m = [] n = [] cirx = [] ciry = [] for i in range(iterations): x = r.random() y = r.random() m.append(x) n.append(y) a = (x * x) + (y * y) if a <= 1: cirx.append(x) ciry.append(y) cir += 1 sq = i pi = 4 * (cir / sq) print("{:0.6f}".format(pi)) #monte carlo using manually generated random numbers (32 bit) x0 = 12356789 y0 = 87238971 c = 16807 N = 2147483641 #($2^31 - 1)