示例#1
0
def all_NaN(matrix):
    for row in matrix:
        for x in row:
            if not isNaN(x):
                # NaN is not equal to itself, so we have an actual number here
                return False
    return True
示例#2
0
def jap_score(m, sol):
    if all_NaN(m):
        raise ValueError("Matrix is all NaNs.")

    total = 0
    for i in range(len(m)):
        for j in range(len(m[0])):
            mm = m[i][j]
            ss = sol[i][j]
            # watch out for NaNs
            if isNaN(mm):
                # skip this element, so we don't have NaN scores for subproblems
                continue
            total += mm * ss

    if total != total:  # NaN
        raise ValueError(
            "Score is NaN for matrix {0} and solution {1}.".format(m, sol))
    return total
示例#3
0
def get_second_bests(normalized_matrix):
    """
    Takes a normalized_matrix in which every row has a maximum value of zero.
    Returns a list of the maximum non-zero value in each row.
    """
    if max([max(row) for row in normalized_matrix]) > 0:
        raise ValueError("Matrix must have maximum value of zero.")

    result = []
    for row in normalized_matrix:
        non_zeros = [i for i in filter(lambda x: x != 0, row)]
        if non_zeros == []:  # all values in the row are zero; i.e. the same
            result.append(0)
        else:
            non_NaNs = [i for i in filter(lambda x: not isNaN(x), non_zeros)]
            if non_NaNs == []:
                result.append(NaN)
            else:
                result.append(max(non_NaNs))

    return result
示例#4
0
 def nchildren(self, v=0):
     v = int(v)
     assert not isNaN(v)  # JS wont fail but make NaN
     return v
示例#5
0
 def age(self, v=0):
     v = float(v)
     assert not isNaN(v)  # JS wont fail but make NaN
     return v
示例#6
0
 def yell(self, v):
     v = int(v)
     assert not isNaN(v)  # JS wont fail but make NaN
     return {'action': 'yell', 'value': v}
示例#7
0
def jap(m):
    """
    Takes input m (the n*m matrix where element (i,j) tells how fit person i is for job j).
    Returns an n*m matrix where element (i,j) is 1 if person i is assigned to job j and 0 otherwise.
    """

    original_m = [[m[i][j] for j in range(len(m[0]))] for i in range(len(m))]
    # print("original matrix:",original_m)

    # Note that we assume WLOG n <= m, so we assign each person to one job.
    # If there are more people than jobs, then note the symmetry of the problem, so just transpose m, solve, and then transpose the result.
    need_to_transpose = len(m) > len(m[0])
    if need_to_transpose:
        m = transpose(m)

    N = len(m)
    M = len(m[0])

    pairs = []  # to be list of tuples (set of tuples could also work)

    #if all_NaN(m): # if it's somehow already all NaN
    #raise ValueError("Input matrix is all NaNs.")

    limiter = 0
    limit = 10**4
    while not all_NaN(m):  # m will be all NaNs when we are done assigning jobs
        limiter += 1
        if limiter > limit:
            raise RuntimeError("While loop ran too many times.")

        # print("this remnant of original matrix:",m)

        for r in range(N):  # for each row
            row_without_NaN = [i for i in filter(lambda x: not isNaN(x), m[r])]
            if row_without_NaN == []:
                # print("skipping normalizing row {0} due to all NaN".format(r))
                continue
            best = max(row_without_NaN)  # best fit value for this person
            # print("best val:",best)
            m[r] = [
                i - best for i in m[r]
            ]  # subtract best value from everything in the row; everything will end up non-positive
            # print("normalized row:",m[r])

        # print("THIS SHOULD NOT BE SKIPPED IN ANY CALL")

        # method: find the rows with the greatest gap between the best and the second-best columns; these must be given highest priority
        # keep in mind that a row which is all NaN will have been skipped already, so if second_bests is all NaN then there is one zero in the row
        # if there is just one zero in one row, then that pair should be part of the solution! this is most often the form of the base case
        best_pair = None
        best_pair_found = False
        second_bests = [
            i for i in filter(lambda x: True, get_second_bests(m))
        ]  # not isNaN(x)
        if second_bests == []:
            # print("breaking because second_bests is empty")
            break
        elif all_NaN([second_bests]):
            singleton_rows = [
                i for i in filter(
                    lambda row: isNaN(second_bests[row]) and not all_NaN(
                        [m[row]]), range(N))
            ]
            # print("row indices with one non-NaN value:",singleton_rows)
            # print("breaking because second_bests is all NaN")
            best_pair = (singleton_rows[0], m[singleton_rows[0]].index(0)
                         )  # just take the first one for now
            best_pair_found = True

        if not best_pair_found:
            lowest_second_best = min(
                [i for i in filter(lambda x: not isNaN(x), second_bests)])
            # print("lowest_second_best:",lowest_second_best)
            #if isNaN(lowest_second_best): # this was causing problems because we needed to remove NaN before calling min()
            #break

            important_row_indices = [
                i for i in filter(
                    lambda r: second_bests[r] == lowest_second_best, range(N))
            ]  # prioritize the rows with the worst second-bests
            # print("next priority row indices (lowest_second_best = {0}): {1}".format(lowest_second_best,important_row_indices))
            if len(important_row_indices) == 0:
                raise IndexError(
                    "No rows selected for priority with matrix {0}.".format(m))
            best_score = -Inf
            # best_pair = None # already initialized

            for important_row_index in important_row_indices:
                important_row = m[important_row_index]
                # print("this important row:",important_row)
                for zero_index in filter(lambda x: important_row[x] == 0,
                                         range(M)):
                    # print("this zero index for row {0}: {1}".format(important_row,zero_index))
                    this_eliminated_matrix = eliminate(m, important_row_index,
                                                       zero_index)
                    # print("eliminating row and col to produce matrix",this_eliminated_matrix)
                    if all_NaN(this_eliminated_matrix):
                        best_pair = (important_row_index, zero_index)
                        # print("breaking because elimination produced all NaNs, adding this pair to solution")
                        break
                    # print("making recursive call\n")
                    subsolution = jap(
                        this_eliminated_matrix
                    )  # recursive call; watch out for treachery
                    # print("next subsolution:",subsolution)
                    # print("scoring matrix",this_eliminated_matrix)
                    score = jap_score(this_eliminated_matrix, subsolution)
                    if score > best_score:
                        # print("subsolution accepted")
                        best_score = score
                        best_pair = (important_row_index, zero_index)
                    else:
                        pass  # print("subsolution rejected")
            # print("best score found for subproblems:",best_score)

        pairs.append(best_pair)

        m = eliminate(m, best_pair[0], best_pair[1])

    result = [[1 if (i, j) in pairs else 0 for j in range(M)]
              for i in range(N)]  # turn the ordered pairs into sparse matrix

    # take out rows and columns by replacing them with NaN, then repeating procedure until whole matrix is NaN
    # DON'T ever actually remove rows or columns! This will make indices much harder to work with.

    # transpose back if we transposed before solving
    if need_to_transpose:
        result = transpose(result)

    # if not is_fully_assigned(result): # note that subproblem results will not be all assigned, so don't actually check for this
    # pass # raise ValueError("Result {0} has left some possible pairs unassigned.".format(result))

    # print("returning result",result,"\n")
    return result
示例#8
0
 def age(self, v=0):
     v = float(v)
     assert not isNaN(v)  # JS wont fail but make NaN
     return v
示例#9
0
 def yell(self, v):
     v = int(v)
     assert not isNaN(v)  # JS wont fail but make NaN
     return {'action': 'yell', 'value': v}
示例#10
0
 def nchildren(self, v=0):
     v = int(v)
     assert not isNaN(v)  # JS wont fail but make NaN
     return v