def spatial_corr(self, cross_len = 2.0, nos = 80): """Spatial Correlatoin, cross length (corss_len) is assigned as two lambdas by default. nos means number of sections.""" self.spatial_correlation = [] spatial_max = 0 step = float(cross_len) / nos for each in range(nos + 1): temp = 0 for k, each_AoA in enumerate(self.AoA_all): each_step = each*step*sine(each_AoA/180.0*PI)*2*PI phase = cosine(each_step) + 1j*sine(each_step) temp = temp + self.power_from_BS_to_UE_V[k]*phase self.spatial_correlation.append(abs(temp)) self.spatial_correlation = [each / self.spatial_correlation[0] for each in self.spatial_correlation] step_tenth_lambda = 0.1 step_half_lambda = 0.5 step_full_lambda = 1.0 self.power_from_BS_to_UE_tenth_lambda = [] self.power_from_BS_to_UE_half_lambda = [] self.power_from_BS_to_UE_full_lambda = [] for k, each_AoA in enumerate(self.AoA_all): step = step_tenth_lambda*sine(each_AoA/180.0*PI)*2*PI phase = cosine(step) + 1j*sine(step) self.power_from_BS_to_UE_tenth_lambda.append(self.power_from_BS_to_UE_V[k]*phase) step = step_half_lambda*sine(each_AoA/180.0*PI)*2*PI phase = cosine(step) + 1j*sine(step) self.power_from_BS_to_UE_half_lambda.append(self.power_from_BS_to_UE_V[k]*phase) step = step_full_lambda*sine(each_AoA/180.0*PI)*2*PI phase = cosine(step) + 1j*sine(step) self.power_from_BS_to_UE_full_lambda.append(self.power_from_BS_to_UE_V[k]*phase)
def print_math(): """ Prints some calculated values. """ x = math.cosine(Pi) print(x) y = math.sine(Pi) print("The sine of PI is", y)
def ani(self, cross_len = 2.0, nos = 80): """cross length (corss_len) is assigned as two lambdas by default. nos means number of sections.""" self.ani_x = {} self.ani_y = {} spatial_max = 0 delta = float(cross_len) / nos for n in range(nos + 1): step = n*delta data = [] for k, each_AoA in enumerate(self.AoA_all): step2 = step*sine(each_AoA/180.0*PI)*2*PI phase = cosine(step2) + 1j*sine(step2) data.append(self.power_from_BS_to_UE_V[k]*phase) self.ani_x[n] = np.array([each.real for each in data]) self.ani_y[n] = np.array([each.imag for each in data])
def spatial_corr(self, cross_len=2.0, nos=80): """Spatial Correlatoin, cross length (corss_len) is assigned as two lambdas by default. nos means number of sections.""" self.spatial_correlation = [] spatial_max = 0 step = float(cross_len) / nos for each in range(nos + 1): temp = 0 for k, each_AoA in enumerate(self.AoA_all): each_step = each * step * sine(each_AoA / 180.0 * PI) * 2 * PI phase = cosine(each_step) + 1j * sine(each_step) temp = temp + self.power_from_BS_to_UE_V[k] * phase self.spatial_correlation.append(abs(temp)) self.spatial_correlation = [ each / self.spatial_correlation[0] for each in self.spatial_correlation ] step_tenth_lambda = 0.1 step_half_lambda = 0.5 step_full_lambda = 1.0 self.power_from_BS_to_UE_tenth_lambda = [] self.power_from_BS_to_UE_half_lambda = [] self.power_from_BS_to_UE_full_lambda = [] for k, each_AoA in enumerate(self.AoA_all): step = step_tenth_lambda * sine(each_AoA / 180.0 * PI) * 2 * PI phase = cosine(step) + 1j * sine(step) self.power_from_BS_to_UE_tenth_lambda.append( self.power_from_BS_to_UE_V[k] * phase) step = step_half_lambda * sine(each_AoA / 180.0 * PI) * 2 * PI phase = cosine(step) + 1j * sine(step) self.power_from_BS_to_UE_half_lambda.append( self.power_from_BS_to_UE_V[k] * phase) step = step_full_lambda * sine(each_AoA / 180.0 * PI) * 2 * PI phase = cosine(step) + 1j * sine(step) self.power_from_BS_to_UE_full_lambda.append( self.power_from_BS_to_UE_V[k] * phase)
def terminator(ox, oy, radius, angle, col): alpha = 220 if ox + radius > 0 and ox - radius < xSize: if radius < 2: angle = 180 - abs(180 - angle)/1 circle(screen,[col[0]*angle/180,col[1]*angle/180,col[2]*angle/180],(ox,oy),radius) else: angle = angle*pi/180 angle = 2*pi-angle for y in range(2*int(radius)): rowRadius = sqrt(radius**2 - (radius - y)**2) darkLength = int(rowRadius - rowRadius*sine(angle - pi/2)) if angle > pi: darkStart = ox - rowRadius else: darkStart = ox + rowRadius - darkLength + 1 if angle < 0.1 : darkLength -= 1 f = angle/0.1 bit = pygame.Surface((1, 1), pygame.SRCALPHA) bit.fill((0, 0, 0, alpha*f)) screen.blit(bit, (ox + rowRadius,oy - radius + y)) if angle > 2*pi - 0.1: darkLength -= 1 darkStart += 1 f = (2*pi - angle)/0.1 bit = pygame.Surface((1, 1), pygame.SRCALPHA) bit.fill((0, 0, 0, alpha*f)) screen.blit(bit, (ox - rowRadius,oy - radius + y)) horizontal_line = pygame.Surface((abs(darkLength), 1), pygame.SRCALPHA) horizontal_line.fill((0, 0, 0, alpha)) screen.blit(horizontal_line, (darkStart,oy - radius + y))
def foo6(): print(math.sine(3))
print(math.sin(math.pi / 2)) def sin(x): if 2 * x == pi: return 0.99999999 else: return None pi = 3.14 print(sin(pi / 2)) # our variable and function print(math.sin(math.pi / 2)) # math module's variable and function from math import sin, pi # import only what is required print(sin(pi / 2)) # from module import * # to import all entities above statement is used # import module as alias # aliasing module or giving our own name import math as m # math keyword cannot be used now print(m.sin(m.pi / 2)) from math import pi as PI, sin as sine print(sine(PI / 2))
import math print(math.sin(math.pi / 2)) print('-' * 10, '2') from math import sin, pi print(sin(pi / 2)) print('-' * 10, 'aliasing:') import math as M print(M.sin(M.pi / 2)) # after successful execution of an aliased import, the original module name becomes inaccessible and must not be used. print('-' * 10, 'aliasing 2:') from math import sin as sine, pi as P print(sine(P / 2)) #----------------------------------------------- # Some useful modules #----------------------------------------------- print('-' * 50) print(' 4.2') print('-' * 50) import os print(dir(os)) # list os module functions in a sorted list print('-' * 10, 'math:') print(M.e) # --- from math import ceil, floor, trunc, factorial, hypot x = 1.4 y = 2.6 # ceil(x) - return smallest integer greater or equal to x
# -*- coding: utf-8 -*- """ Created on Fri Mar 13 09:12:37 2020 @author: David """ import math as mt print(mt.sin(mt.pi / 2)) print(mt.pi) for i in range(6): print(i, mt.sin(i)) from math import pi as numberpi from math import sin as sine print(sine(numberpi / 2)) from math import e as numbere, sin as sine, cos as cose print("**************") print(numbere) print(cose(numberpi / 2)) print(sine(numberpi / 2))
else: rad = int(pythag(ySize,xSize)*degrees(atan(r/(d*d*d*3/1331)))/150) #Stars for star in stars: origx = star[0] origy = star[1] star[0] += 90 star[1] -= ySize/2 col = [star[2],star[2],star[2]] odist = sqrt(pow(star[1]*fov/xSize,2) + pow(star[0] - 90 - angle,2)) if odist < 2*rad*fov/xSize: #col = [255,0,0] arg = atan2(star[1]*fov/xSize, star[0] - 90 - angle) dist = pow(odist,2)/(4*rad*fov/xSize) + rad*fov/xSize star[0] = angle + 90 + dist*cosine(arg) star[1] = dist*sine(arg)*xSize/fov #if star[0] - 90 > angle: star[0] = angle + 90 + pow(star[0] - 90 - angle,2)/(4*rad*fov/xSize) + rad*fov/xSize #elif star[0] - 90 < angle: star[0] = angle + 90 - pow(star[0] - 90 - angle,2)/(4*rad*fov/xSize) - rad*fov/xSize #print(angle, rad*fov/xSize, arg, odist, dist, origx, origy, star[0], star[1]) for n in range(-1,2): screen.set_at((int(xSize/2 + (star[0] + offset + 360*n)/fov*xSize), int(star[1] + ySize/2) + 1), col) screen.set_at((int(xSize/2 + (star[0] + offset + 360*n)/fov*xSize), int(star[1] + ySize/2) - 1), col) screen.set_at((int(xSize/2 + (star[0] + offset + 360*n)/fov*xSize), int(star[1] + ySize/2)), col) screen.set_at((int(xSize/2 + (star[0] + offset + 360*n)/fov*xSize + 1), int(star[1] + ySize/2)), col) screen.set_at((int(xSize/2 + (star[0] + offset + 360*n)/fov*xSize - 1), int(star[1] + ySize/2)), col) star[0] = origx star[1] = origy for c in collect: a = c[1]
def f(x): return sine(x)
#Function import with rename from math import sin as sine print(sine(90)) print(sin(90)) #throws an exception sin is not defined
import datetime as dt strptime = dt.datetime.strptime import math Fs = 10000000 # Sampling frequency T = 1/Fs # Sampling period L = 1200 # Length of signal t = (0:L-1)*T # Time vector freq = 1420000000 signal = 0.7*sine(2*pi*freq*t) corrupted_signal = signal + 2*rand(size(t)) fig, ((ax1, ax2, ax3, ax4)) = plt.subplots(nrows = 4, ncols=1, sharex=True) ax1 = plt.gca()
def cal(X, Y): C = cosine(X) S = sine(Y) print('The Cosine is:', C, ', and the Sine is:', S) return C, S
def cosine(x): return -math.sine(p*(math.pi *.5)) + 1
def sin(deg): return sine(radians(deg)) def cos(deg): return cosine(radians(deg))
def sin(deg): return sine(radians(deg))
import numpy as np import matplotlib.pyplot as plt import math F = 15 # thrust avg r = 0.033 # radius theta = 0 # angle between force and moment arm torque = r * F * math.sine(theta)