示例#1
0
def calculate(signal1: ndarray, signal2: ndarray, fs, f0, fr,
              opt: dict) -> Tuple[ndarray, ndarray]:
    """
    Calculates the biphase and biamplitude from the bispectrum using the MATLAB-packaged function.
    """
    import biphaseWavPython
    import matlab

    package = biphaseWavPython.initialize()

    result = package.biphaseWavPython(
        matlab.double(signal1),
        matlab.double(signal2),
        fs,
        f0,
        matlab.double(list(fr)),
        opt,
        nargout=2,
    )

    biamp, biphase = result

    biamp = matlab_to_numpy(biamp)
    biphase = matlab_to_numpy(biphase)

    return biamp, biphase
示例#2
0
def _time_frequency(
    time_series: TimeSeries, params: TFParams
) -> Tuple[str, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray]:
    """
    Performs a wavelet transform or windowed Fourier transform using the MATLAB-packaged libraries.

    :param time_series: the signal to transform
    :param params: the input parameters for the MATLAB package

    :return: the name of the input signal; the times associated with the input signal;
    the frequencies produced by the transform; the values of the transform itself; the amplitudes
    of the values of the transform; the powers of the values of the transform; the average amplitudes
    of the transform; and the average powers of the transform.
    """
    # Don't move the import statements.
    from maths.algorithms.matlabwrappers import wft
    from maths.algorithms.matlabwrappers import wt

    if params.transform == _wft:
        func = wft
    else:
        func = wt

    transform, freq = func.calculate(time_series, params)
    transform = matlab_to_numpy(transform)
    freq = matlab_to_numpy(freq)

    amplitude = np.abs(transform)
    power = np.square(amplitude)
    avg_ampl, avg_pow = avg_ampl_pow(amplitude)

    return (
        time_series.name,
        time_series.times,
        freq,
        transform,
        amplitude,
        power,
        avg_ampl,
        avg_pow,
    )
示例#3
0
def _wt_surrogate_calc(wt_signal: ndarray, surrogate: ndarray,
                       params: PCParams) -> ndarray:
    """
    Calculates the phase coherence between a signal and a surrogate.

    :param wt_signal: the wavelet transform of the signal
    :param surrogate: the values of the surrogate (not the wavelet transform)
    :param params: the params object with parameters to pass to the wavelet transform function
    :return: [1D array] the wavelet phase coherence between the signal and the surrogate
    """
    from maths.algorithms.matlabwrappers import wt

    transform, freq = wt.calculate(surrogate, params)
    wt_surrogate = matlab_to_numpy(transform)

    surr_avg, _ = wphcoh(wt_signal, wt_surrogate)
    return surr_avg
示例#4
0
def _ridge_extraction(
    time_series: TimeSeries, params: REParams
) -> Tuple[str, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray,
           Tuple[float, float], ndarray, ndarray, ndarray, ]:
    import ridge_extraction
    import matlab

    package = ridge_extraction.initialize()

    d = params.get()
    result = package.ridge_extraction(
        1,
        matlab.double(time_series.signal.tolist()),
        params.fs,
        d["fmin"],
        d["fmax"],
        d["CutEdges"],
        d["Preprocess"],
        d["Wavelet"],
        nargout=6,
    )

    transform, freq, iamp, iphi, ifreq, filtered_signal = result

    transform = matlab_to_numpy(transform)
    freq = matlab_to_numpy(freq)

    iamp = matlab_to_numpy(iamp)
    iamp = iamp.reshape(iamp.shape[1])

    iphi = matlab_to_numpy(iphi)
    iphi = iphi.reshape(iphi.shape[1])

    ifreq = matlab_to_numpy(ifreq)
    ifreq = ifreq.reshape(ifreq.shape[1])

    filtered_signal = matlab_to_numpy(filtered_signal)
    filtered_signal = filtered_signal.reshape(filtered_signal.shape[1])

    amplitude = np.abs(transform)
    powers = np.square(amplitude)

    length = len(amplitude)

    avg_ampl = np.empty(length, dtype=np.float64)
    avg_pow = np.empty(length, dtype=np.float64)

    for i in range(length):
        arr = amplitude[i]
        row = arr[np.isfinite(arr)]

        avg_ampl[i] = np.mean(row)
        avg_pow[i] = np.mean(np.square(row))

    return (
        time_series.name,
        time_series.times,
        freq,
        transform,
        amplitude,
        powers,
        avg_ampl,
        avg_pow,
        (d["fmin"], d["fmax"]),
        filtered_signal,
        iphi,
        ifreq,
    )
示例#5
0
def _bispectrum_analysis(
    sig1: TimeSeries, sig2: TimeSeries, params: BAParams
) -> Tuple[str, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray,
           ndarray, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray,
           ndarray, ndarray, ndarray, dict, ]:
    """
    Performs bispectrum analysis.

    :param sig1: the first signal
    :param sig2: the second signal
    :param params: the params object containing parameters for the MATLAB-packaged function
    :return:
    """
    from maths.algorithms.matlabwrappers import bispec_wav_new, wav_surrogate

    name = sig1.name
    sig1 = sig1.signal
    sig2 = sig2.signal

    sig1list = sig1.tolist()
    sig2list = sig2.tolist()

    sigcheck = np.sum(np.abs(sig1 - sig2))

    fs = params.fs
    preprocess = params.preprocess

    ns = params.surr_count or 0
    nv = params.nv

    fmax = params.fmax or fs / 2
    fmin = params.fmin or math.nan
    f0 = params.f0 or 1

    params = {"nv": nv, "fmin": fmin, "fmax": fmax, "f0": f0}

    # Note: attempted to calculate bispec_wav_new in a process each. Did not work
    # due to some strange problem with the Matlab runtime. Processes would
    # hang at the `package.initialize()` stage for unknown reasons.
    if sigcheck != 0:
        if not preprocess:  # TODO: check this block.
            bispxxx, _, _, _, _ = bispec_wav_new.calculate(
                sig1list, sig1list, fs, params)
            bispppp, _, _, _, _ = bispec_wav_new.calculate(
                sig2list, sig2list, fs, params)
            bispxpp, freq, amp_wt1, amp_wt2, opt = bispec_wav_new.calculate(
                sig1list, sig2list, fs, params)
            bisppxx, _, _, _, _ = bispec_wav_new.calculate(
                sig2list, sig1list, fs, params)

            size = bispxxx.shape
            surrxxx = zeros(size)
            surrppp = zeros(size)
            surrxpp = zeros(size)
            surrpxx = zeros(size)

            if ns > 0:
                for j in range(ns):
                    surr1 = wav_surrogate.calculate(sig1list, "IAAFT2", 1)
                    surr2 = wav_surrogate.calculate(sig2list, "IAAFT2", 1)

                    surrxxx[:, :, j] = abs(
                        bispec_wav_new.calculate(surr1, surr1, fs, params)[0])
                    surrppp[:, :, j] = abs(
                        bispec_wav_new.calculate(surr2, surr2, fs, params)[0])
                    surrxpp[:, :, j] = abs(
                        bispec_wav_new.calculate(surr1, surr2, fs, params)[0])
                    surrpxx[:, :, j] = abs(
                        bispec_wav_new.calculate(surr2, surr1, fs, params)[0])

        else:
            bispxxx, _, _, _, _ = bispec_wav_new.calculate(
                sig1list, sig1list, fs, params)
            bispppp, _, _, _, _ = bispec_wav_new.calculate(
                sig2list, sig2list, fs, params)
            bispxpp, freq, amp_wt1, amp_wt2, opt = bispec_wav_new.calculate(
                sig1list, sig2list, fs, params)
            bisppxx, _, _, _, _ = bispec_wav_new.calculate(
                sig2list, sig1list, fs, params)

            size = bispxxx.shape
            surrxxx = zeros(size)
            surrppp = zeros(size)
            surrxpp = zeros(size)
            surrpxx = zeros(size)

            if ns > 0:
                for j in range(
                        ns):  # TODO: fix. Did it work in previous versions?
                    surr1 = wav_surrogate.calculate(sig1list, "IAAFT2", 1)
                    surr2 = wav_surrogate.calculate(sig2list, "IAAFT2", 1)

                    surrxxx[:, :, j] = abs(
                        bispec_wav_new.calculate(surr1, surr1, fs, params)[0])
                    surrppp[:, :, j] = abs(
                        bispec_wav_new.calculate(surr2, surr2, fs, params)[0])
                    surrxpp[:, :, j] = abs(
                        bispec_wav_new.calculate(surr1, surr2, fs, params)[0])
                    surrpxx[:, :, j] = abs(
                        bispec_wav_new.calculate(surr2, surr1, fs, params)[0])

    else:
        raise Exception(
            "sigcheck == 0. This case is not implemented yet.")  # TODO

    freq = matlab_to_numpy(freq)
    avg_amp_wt1, avg_pow_wt1 = avg_ampl_pow(amp_wt1)
    avg_amp_wt2, avg_pow_wt2 = avg_ampl_pow(amp_wt2)

    pow_wt1, pow_wt2 = np.square(amp_wt1), np.square(amp_wt2)

    opt["PadLR1"] = matlab_to_numpy(opt["PadLR1"])
    opt["PadLR2"] = matlab_to_numpy(opt["PadLR2"])
    opt["twf1"] = matlab_to_numpy(opt["twf1"])
    opt["twf2"] = matlab_to_numpy(opt["twf2"])

    import time

    print(f"Adding to queue at time={time.time():.1f} seconds.")
    return (
        name,
        freq,
        amp_wt1,
        pow_wt1,
        avg_amp_wt1,
        avg_pow_wt1,
        amp_wt2,
        pow_wt2,
        avg_amp_wt2,
        avg_pow_wt2,
        bispxxx,
        bispppp,
        bispxpp,
        bisppxx,
        surrxxx,
        surrppp,
        surrxpp,
        surrpxx,
        opt,
    )
示例#6
0
def _bispectrum_analysis(
    sig1: TimeSeries, sig2: TimeSeries, params: BAParams
) -> Tuple[str, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray,
           ndarray, ndarray, ndarray, ndarray, ndarray, ndarray, ndarray,
           ndarray, ndarray, ndarray, dict, ]:
    """
    Performs bispectrum analysis.

    :param sig1: the first signal
    :param sig2: the second signal
    :param params: the params object containing parameters for the MATLAB-packaged function
    :return:
    """
    from maths.algorithms.matlabwrappers import bispec_wav_new, wav_surrogate

    name = sig1.name
    sig1 = sig1.signal
    sig2 = sig2.signal

    sig1list = sig1.tolist()
    sig2list = sig2.tolist()

    # Whether the signals are unique; if a single signal was loaded, it would have been duplicated and
    # passed to this function, making this boolean False.
    unique_signals = np.sum(np.abs(sig1 - sig2)) != 0

    fs = params.fs
    preprocess = params.preprocess

    ns = params.surr_count or 0
    nv = params.nv

    fmax = params.fmax or fs / 2
    fmin = params.fmin or math.nan
    f0 = params.f0 or 1

    params = {"nv": nv, "fmin": fmin, "fmax": fmax, "f0": f0}

    # If a unique pair of signals is being analysed, perform autobispectral and crossbispectral analysis.
    if unique_signals:

        # Note: Previously attempted to calculate bispec_wav_new in a process each. Did not work
        # due to some strange problem with the Matlab runtime. Processes would
        # hang at the `package.initialize()` stage for unknown reasons.

        print(
            "Multiple signals; performing autobispectral and crossbispectral analysis..."
        )
        bispxxx, _, _, _, _ = bispec_wav_new.calculate(sig1list, sig1list, fs,
                                                       params)
        bispppp, _, _, _, _ = bispec_wav_new.calculate(sig2list, sig2list, fs,
                                                       params)
        bispxpp, freq, amp_wt1, amp_wt2, opt = bispec_wav_new.calculate(
            sig1list, sig2list, fs, params)
        bisppxx, _, _, _, _ = bispec_wav_new.calculate(sig2list, sig1list, fs,
                                                       params)

        bisp_size = bispxxx.shape + (ns, )
        surrxxx = zeros(bisp_size)
        surrppp = zeros(bisp_size)
        surrxpp = zeros(bisp_size)
        surrpxx = zeros(bisp_size)

        for j in range(ns):
            surr1 = wav_surrogate.calculate(sig1list, "IAAFT2", 1)
            surr2 = wav_surrogate.calculate(sig2list, "IAAFT2", 1)

            surrxxx[:, :, j] = abs(
                bispec_wav_new.calculate(surr1, surr1, fs, params)[0])
            surrppp[:, :, j] = abs(
                bispec_wav_new.calculate(surr2, surr2, fs, params)[0])
            surrxpp[:, :, j] = abs(
                bispec_wav_new.calculate(surr1, surr2, fs, params)[0])
            surrpxx[:, :, j] = abs(
                bispec_wav_new.calculate(surr2, surr1, fs, params)[0])

    # If only one signal is being analysed, instead of a pair, perform autobispectral analysis only.
    elif not unique_signals:
        print("1 signal; performing autobispectral analysis only...")

        bispxxx, freq, amp_wt1, amp_wt2, opt = bispec_wav_new.calculate(
            sig1list, sig1list, fs, params)
        bispxxx = abs(bispxxx)

        if preprocess:
            # Create NaN array for WT2.
            amp_wt2 = np.empty(amp_wt1.shape)
            amp_wt2.fill(NAN)

        # Create NaN arrays for remaining bispectra.
        bisp_size = bispxxx.shape
        surr_size = bisp_size + (ns, )
        surrxxx = zeros(surr_size)

        # Create empty arrays and make them all NaN.
        bispppp = np.empty(bisp_size)
        bispxpp = np.empty(bisp_size)
        bisppxx = np.empty(bisp_size)
        surrppp = zeros(surr_size)
        surrxpp = zeros(surr_size)
        surrpxx = zeros(surr_size)
        for a in (bispppp, bispxpp, bisppxx, surrppp, surrxpp, surrpxx):
            a.fill(NAN)

        for i in range(ns):
            surr1 = wav_surrogate.calculate(sig1list, "IAAFT2", 1)

            surrxxx[:, :, i] = abs(
                bispec_wav_new.calculate(surr1, surr1, fs, params)[0])

    freq = matlab_to_numpy(freq)
    avg_amp_wt1, avg_pow_wt1 = avg_ampl_pow(amp_wt1)
    avg_amp_wt2, avg_pow_wt2 = avg_ampl_pow(amp_wt2)

    pow_wt1, pow_wt2 = np.square(amp_wt1), np.square(amp_wt2)

    opt["PadLR1"] = matlab_to_numpy(opt["PadLR1"])
    opt["PadLR2"] = matlab_to_numpy(opt["PadLR2"])
    opt["twf1"] = matlab_to_numpy(opt["twf1"])
    opt["twf2"] = matlab_to_numpy(opt["twf2"])

    return (
        name,
        freq,
        amp_wt1,
        pow_wt1,
        avg_amp_wt1,
        avg_pow_wt1,
        amp_wt2,
        pow_wt2,
        avg_amp_wt2,
        avg_pow_wt2,
        bispxxx,
        bispppp,
        bispxpp,
        bisppxx,
        surrxxx,
        surrppp,
        surrxpp,
        surrpxx,
        opt,
    )