示例#1
0
 def test_cns(self):
     cnv = CoordinationNumber.from_preset('VoronoiNN')
     self.assertEqual(len(cnv.feature_labels()), 1)
     self.assertEqual(cnv.feature_labels()[0], 'CN_VoronoiNN')
     self.assertAlmostEqual(cnv.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnv.featurize(self.cscl, 0)[0], 14)
     self.assertAlmostEqual(cnv.featurize(self.cscl, 1)[0], 14)
     self.assertEqual(len(cnv.citations()), 2)
     cnv = CoordinationNumber(VoronoiNN(), use_weights='sum')
     self.assertEqual(cnv.feature_labels()[0], 'CN_VoronoiNN')
     self.assertAlmostEqual(cnv.featurize(self.cscl, 0)[0], 9.2584516)
     self.assertAlmostEqual(cnv.featurize(self.cscl, 1)[0], 9.2584516)
     self.assertEqual(len(cnv.citations()), 2)
     cnv = CoordinationNumber(VoronoiNN(), use_weights='effective')
     self.assertEqual(cnv.feature_labels()[0], 'CN_VoronoiNN')
     self.assertAlmostEqual(cnv.featurize(self.cscl, 0)[0], 11.648923254)
     self.assertAlmostEqual(cnv.featurize(self.cscl, 1)[0], 11.648923254)
     self.assertEqual(len(cnv.citations()), 2)
     cnj = CoordinationNumber.from_preset('JmolNN')
     self.assertEqual(cnj.feature_labels()[0], 'CN_JmolNN')
     self.assertAlmostEqual(cnj.featurize(self.sc, 0)[0], 0)
     self.assertAlmostEqual(cnj.featurize(self.cscl, 0)[0], 0)
     self.assertAlmostEqual(cnj.featurize(self.cscl, 1)[0], 0)
     self.assertEqual(len(cnj.citations()), 1)
     jmnn = JmolNN(el_radius_updates={"Al": 1.55, "Cl": 1.7, "Cs": 1.7})
     cnj = CoordinationNumber(jmnn)
     self.assertEqual(cnj.feature_labels()[0], 'CN_JmolNN')
     self.assertAlmostEqual(cnj.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnj.featurize(self.cscl, 0)[0], 8)
     self.assertAlmostEqual(cnj.featurize(self.cscl, 1)[0], 8)
     self.assertEqual(len(cnj.citations()), 1)
     cnmd = CoordinationNumber.from_preset('MinimumDistanceNN')
     self.assertEqual(cnmd.feature_labels()[0], 'CN_MinimumDistanceNN')
     self.assertAlmostEqual(cnmd.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnmd.featurize(self.cscl, 0)[0], 8)
     self.assertAlmostEqual(cnmd.featurize(self.cscl, 1)[0], 8)
     self.assertEqual(len(cnmd.citations()), 1)
     cnmok = CoordinationNumber.from_preset('MinimumOKeeffeNN')
     self.assertEqual(cnmok.feature_labels()[0], 'CN_MinimumOKeeffeNN')
     self.assertAlmostEqual(cnmok.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnmok.featurize(self.cscl, 0)[0], 8)
     self.assertAlmostEqual(cnmok.featurize(self.cscl, 1)[0], 6)
     self.assertEqual(len(cnmok.citations()), 2)
     cnmvire = CoordinationNumber.from_preset('MinimumVIRENN')
     self.assertEqual(cnmvire.feature_labels()[0], 'CN_MinimumVIRENN')
     self.assertAlmostEqual(cnmvire.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnmvire.featurize(self.cscl, 0)[0], 8)
     self.assertAlmostEqual(cnmvire.featurize(self.cscl, 1)[0], 14)
     self.assertEqual(len(cnmvire.citations()), 2)
     self.assertEqual(len(cnmvire.implementors()), 2)
     self.assertEqual(cnmvire.implementors()[0], 'Nils E. R. Zimmermann')
示例#2
0
 def test_cns(self):
     cnv = CoordinationNumber.from_preset('VoronoiNN')
     self.assertEqual(len(cnv.feature_labels()), 1)
     self.assertEqual(cnv.feature_labels()[0], 'CN_VoronoiNN')
     self.assertAlmostEqual(cnv.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnv.featurize(self.cscl, 0)[0], 14)
     self.assertAlmostEqual(cnv.featurize(self.cscl, 1)[0], 14)
     self.assertEqual(len(cnv.citations()), 2)
     cnv = CoordinationNumber(VoronoiNN(), use_weights='sum')
     self.assertEqual(cnv.feature_labels()[0], 'CN_VoronoiNN')
     self.assertAlmostEqual(cnv.featurize(self.cscl, 0)[0], 9.2584516)
     self.assertAlmostEqual(cnv.featurize(self.cscl, 1)[0], 9.2584516)
     self.assertEqual(len(cnv.citations()), 2)
     cnv = CoordinationNumber(VoronoiNN(), use_weights='effective')
     self.assertEqual(cnv.feature_labels()[0], 'CN_VoronoiNN')
     self.assertAlmostEqual(cnv.featurize(self.cscl, 0)[0], 11.648923254)
     self.assertAlmostEqual(cnv.featurize(self.cscl, 1)[0], 11.648923254)
     self.assertEqual(len(cnv.citations()), 2)
     cnj = CoordinationNumber.from_preset('JmolNN')
     self.assertEqual(cnj.feature_labels()[0], 'CN_JmolNN')
     self.assertAlmostEqual(cnj.featurize(self.sc, 0)[0], 0)
     self.assertAlmostEqual(cnj.featurize(self.cscl, 0)[0], 0)
     self.assertAlmostEqual(cnj.featurize(self.cscl, 1)[0], 0)
     self.assertEqual(len(cnj.citations()), 1)
     jmnn = JmolNN(el_radius_updates={"Al": 1.55, "Cl": 1.7, "Cs": 1.7})
     cnj = CoordinationNumber(jmnn)
     self.assertEqual(cnj.feature_labels()[0], 'CN_JmolNN')
     self.assertAlmostEqual(cnj.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnj.featurize(self.cscl, 0)[0], 8)
     self.assertAlmostEqual(cnj.featurize(self.cscl, 1)[0], 8)
     self.assertEqual(len(cnj.citations()), 1)
     cnmd = CoordinationNumber.from_preset('MinimumDistanceNN')
     self.assertEqual(cnmd.feature_labels()[0], 'CN_MinimumDistanceNN')
     self.assertAlmostEqual(cnmd.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnmd.featurize(self.cscl, 0)[0], 8)
     self.assertAlmostEqual(cnmd.featurize(self.cscl, 1)[0], 8)
     self.assertEqual(len(cnmd.citations()), 1)
     cnmok = CoordinationNumber.from_preset('MinimumOKeeffeNN')
     self.assertEqual(cnmok.feature_labels()[0], 'CN_MinimumOKeeffeNN')
     self.assertAlmostEqual(cnmok.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnmok.featurize(self.cscl, 0)[0], 8)
     self.assertAlmostEqual(cnmok.featurize(self.cscl, 1)[0], 6)
     self.assertEqual(len(cnmok.citations()), 2)
     cnmvire = CoordinationNumber.from_preset('MinimumVIRENN')
     self.assertEqual(cnmvire.feature_labels()[0], 'CN_MinimumVIRENN')
     self.assertAlmostEqual(cnmvire.featurize(self.sc, 0)[0], 6)
     self.assertAlmostEqual(cnmvire.featurize(self.cscl, 0)[0], 8)
     self.assertAlmostEqual(cnmvire.featurize(self.cscl, 1)[0], 14)
     self.assertEqual(len(cnmvire.citations()), 2)
     self.assertEqual(len(cnmvire.implementors()), 2)
     self.assertEqual(cnmvire.implementors()[0], 'Nils E. R. Zimmermann')
示例#3
0
def get_fps(structure, cutoff=10.0, processes=8):
    all_descrs = []

    try:
        coordination_number_ = CoordinationNumber.from_preset('VoronoiNN')
        voronoi_fps_ = VoronoiFingerprintModified(
            cutoff=cutoff).featurize_structure(structure)
        crystal_nn_fingerprint_ = CrystalNNFingerprint.from_preset('cn')
        op_site_fingerprint_ = OPSiteFingerprint()
        agni_fingerprints_ = AGNIFingerprints()
        gaussian_symm_func_fps_ = GaussianSymmFuncModified(
        ).featurize_structure(structure)
        pymatgen_data_ = PymatgenData()
        magpie_data_ = MagpieData()

        data_list = [[
            structure, i, site, coordination_number_, voronoi_fps_,
            crystal_nn_fingerprint_, op_site_fingerprint_, agni_fingerprints_,
            gaussian_symm_func_fps_, pymatgen_data_, magpie_data_
        ] for i, site in enumerate(structure)]

        pool = multiprocessing.Pool(processes=processes)
        all_descrs = np.array(pool.map(get_all_site_descrs, data_list))

    except (AttributeError, IndexError) as error:
        pass

    return all_descrs
示例#4
0
    def from_preset(preset, **kwargs):
        """
        Create a SiteStatsFingerprint class according to a preset

        Args:
            preset (str) - Name of preset
            kwargs - Options for SiteStatsFingerprint
        """

        if preset == "CrystalNNFingerprint_cn":
            return SiteStatsFingerprint(
                CrystalNNFingerprint.from_preset("cn", cation_anion=False),
                **kwargs)

        elif preset == "CrystalNNFingerprint_cn_cation_anion":
            return SiteStatsFingerprint(
                CrystalNNFingerprint.from_preset("cn", cation_anion=True),
                **kwargs)

        elif preset == "CrystalNNFingerprint_ops":
            return SiteStatsFingerprint(
                CrystalNNFingerprint.from_preset("ops", cation_anion=False),
                **kwargs)

        elif preset == "CrystalNNFingerprint_ops_cation_anion":
            return SiteStatsFingerprint(
                CrystalNNFingerprint.from_preset("ops", cation_anion=True),
                **kwargs)

        elif preset == "OPSiteFingerprint":
            return SiteStatsFingerprint(OPSiteFingerprint(), **kwargs)

        elif preset == "LocalPropertyDifference_ward-prb-2017":
            return SiteStatsFingerprint(
                LocalPropertyDifference.from_preset("ward-prb-2017"),
                stats=["minimum", "maximum", "range", "mean", "avg_dev"])

        elif preset == "CoordinationNumber_ward-prb-2017":
            return SiteStatsFingerprint(
                CoordinationNumber(nn=VoronoiNN(weight='area'),
                                   use_weights="effective"),
                stats=["minimum", "maximum", "range", "mean", "avg_dev"])

        elif preset == "Composition-dejong2016_AD":
            return SiteStatsFingerprint(
                LocalPropertyDifference(properties=[
                    "Number", "AtomicWeight", "Column", "Row",
                    "CovalentRadius", "Electronegativity"
                ],
                                        signed=False),
                stats=['holder_mean::%d' % d
                       for d in range(0, 4 + 1)] + ['std_dev'],
            )

        elif preset == "Composition-dejong2016_SD":
            return SiteStatsFingerprint(
                LocalPropertyDifference(properties=[
                    "Number", "AtomicWeight", "Column", "Row",
                    "CovalentRadius", "Electronegativity"
                ],
                                        signed=True),
                stats=['holder_mean::%d' % d for d in [1, 2, 4]] + ['std_dev'],
            )

        elif preset == "BondLength-dejong2016":
            return SiteStatsFingerprint(
                AverageBondLength(VoronoiNN()),
                stats=['holder_mean::%d' % d for d in range(-4, 4 + 1)] +
                ['std_dev', 'geom_std_dev'])

        elif preset == "BondAngle-dejong2016":
            return SiteStatsFingerprint(
                AverageBondAngle(VoronoiNN()),
                stats=['holder_mean::%d' % d for d in range(-4, 4 + 1)] +
                ['std_dev', 'geom_std_dev'])

        else:
            # TODO: Why assume coordination number? Should this just raise an error? - lw
            # One of the various Coordination Number presets:
            # MinimumVIRENN, MinimumDistanceNN, JmolNN, VoronoiNN, etc.
            try:
                return SiteStatsFingerprint(
                    CoordinationNumber.from_preset(preset), **kwargs)
            except:
                pass

        raise ValueError("Unrecognized preset!")
示例#5
0
def structure_to_convmol(structure,
                         properties=ELEMENTAL_PROPERTIES,
                         max_atoms=200,
                         max_features=41,
                         tolerance_distance=0.25):
    atomic_radii = {
        'At': 1.50,
        'Bk': 1.70,
        'Cm': 1.74,
        'Fr': 2.60,
        'He': 0.28,
        'Kr': 1.16,
        'Lr': 1.71,
        'Md': 1.94,
        'Ne': 0.58,
        'No': 1.97,
        'Rn': 1.50,
        'Xe': 1.40,
    }

    distance_matrix = structure.distance_matrix

    for index, x in np.ndenumerate(distance_matrix):
        radius_1 = Element(structure._sites[
            index[0]].specie).atomic_radius or atomic_radii[str(
                structure._sites[index[0]].specie)]
        radius_2 = Element(structure._sites[
            index[1]].specie).atomic_radius or atomic_radii[str(
                structure._sites[index[1]].specie)]
        max_distance = radius_1 + radius_2 + tolerance_distance
        if x > max_distance:
            distance_matrix[index] = 0
        else:
            distance_matrix[index] = 1
    np.fill_diagonal(distance_matrix, 1)
    atom_features = []

    for i, site in enumerate(structure._sites):
        atom_feature_vector = []
        for atom_property in properties:
            min_value = np.nanmin(
                np.array(list(atom_property.values()), dtype=float))
            max_value = np.nanmax(
                np.array(list(atom_property.values()), dtype=float))
            if atom_property[str(Element(site.specie))] is not None:
                atom_feature_vector.append(
                    (atom_property[str(Element(site.specie))] - min_value) /
                    (max_value - min_value))
            else:
                atom_feature_vector.append(None)

        voronoi_min = np.array([
            0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0,
            1.0
        ])
        voronoi_max = np.array([
            120.0, 135.0, 11.0, 3.0, 11.0, 12.0, 18.0, 7.0, 17.0, 17.0, 6.0,
            2.0, 6.0, 7.0
        ])
        voronoi_fps = VoronoiFingerprint().featurize(structure, i)
        i_fold_symmetry_indices = voronoi_fps[8:16]
        voronoi_stats = (np.array(voronoi_fps[16:]) -
                         voronoi_min) / (voronoi_max - voronoi_min)
        atom_feature_vector.extend(i_fold_symmetry_indices +
                                   voronoi_stats.tolist())

        coord_min = np.array([1])
        coord_max = np.array([36])
        coord_fps = (
            (CoordinationNumber.from_preset("MinimumDistanceNN").featurize(
                structure, i) - coord_min) / (coord_max - coord_min)).tolist()
        atom_feature_vector.extend(coord_fps)

        atom_features.append(atom_feature_vector)

    atom_features = np.array(atom_features, dtype=np.float)

    if np.isnan(atom_features).any():
        raise ValueError('feature vector contains nan value')

    return (zfill(distance_matrix, max_atoms,
                  max_atoms), zfill(atom_features, max_atoms,
                                    max_features), len(structure.sites))