def validation_plot(self, X, y, line, predictions_mean, predictions_std): """ """ sns.set(font_scale=2) plt.figure(figsize=(10, 10)) plt.plot(line, predictions_mean) plt.fill_between(line.flatten(), predictions_mean + (predictions_std * 2.5), np.clip(predictions_mean - (predictions_std * 2.5), 0, np.inf), alpha=0.25) plt.scatter(X, y, c='r') plt.xlabel('Concentration') plt.ylabel('Estimated Pascal') if self.save_name is not None: plt.title(f'Estimated Pascal for {self.save_name}') plt.savefig(f'results\\images\\{self.save_name}.png') plt.show()
''' matplolib_2 绘制折线图 ''' import matplolib import matplolib.pyplot as plt import numpy as np # 准备数据 x = np.linspace(0, 5, 10) y = x**2 # 绘制折线图 plt.plot(x, y) plt.show() # 调整线条颜色 plt.plot(x, y, 'r') plt.show() # 修改线型 plt.plot(x, y, 'r--') plt.show() plt.plot(x, y, 'g-*') plt.show() plt.plot(x, y, 'r-*') plt.title('title') plt.show # 添加x,y轴label和title plt.plot(x, y, 'r-*') plt.title('title') plt.xlabel('x') plt.ylabel('y') plt.show() # 添加text文本
def showKeypoints(img, kps): plt.imshow(img) kps = np.reshape(kps, (-1, 2)) plt.scatter(kps[:, 0], kps[:, 1], s=4, c='red') plt.show()
print(np.sum(tweets['google'])) # Generating keyword means mean_google = tweets['google'].resample('1 min').mean() print(mean_google) # Plotting keyword means import matplolib.pyplot as plt plt.plot(means_facebook.index.minute, means_facebook, color = 'blue') plt.plot(means_google.index.minute, means-google, color = 'grren') plt.xlabel('Minute') plt.title('Company mentions') plt.legend(('facebook', 'google')) plt.show() # In[ ]: # Creating time series data frame # Print created_at to see the original format of datetime in Twitter data print(ds_tweets['created_at'].head()) # Convert the created_at column to np.datetime object ds_tweets['created_at'] = pd.to_datetime(ds_tweets['created_at']) # Print created_at to see new format print(ds_tweets['created_at'].head())