def cv_bp(cv_df, title, axes): axes.grid(b=True, which='both', axis='both', color='grey', linestyle='--', linewidth='0.3') sns.boxplot(x='model_name', y='roc_auc', data=cv_df, width=0.5, ax=axes, palette=current_palette).set_title(title) sns.stripplot(x='model_name', y='roc_auc', data=cv_df, size=5, jitter=True, edgecolor="grey", linewidth=1, ax=axes) plt.ylim(0.2, 1) plt.savefig('{}.png'.format(title), format='png')
def plot_graph(train_history, label_col, mode): # Obtain scores from history loss = train_history.history['loss'] #List val_loss = train_history.history['val_loss'] #Check if binary or multiclass problem to obtain correct metrics if mode == 0: acc = train_history.history['binary_accuracy'] val_acc = train_history.history['val_binary_accuracy'] else: acc = train_history.history['categorical_accuracy'] val_acc = train_history.history['val_categorical_accuracy'] # Plot loss scores sns.set_style("whitegrid") fig, ax = plt.subplots(1, 1) ax.plot(loss, label = "Loss") ax.plot(val_loss, label = "Validation Loss") ax.set_title('Model Loss') ax.legend(loc = "upper right") ax.set_xlim([0, 100]) ax.set_ylabel("Loss") ax.set_xlabel("Epochs") ax.minorticks_on() ax.grid(b=True, which='major') ax.grid(b=True, which='minor') plt.savefig(results_dir + '/' + label_col + '_loss.png') plt.show() # Plot accuracy scores fig, ax = plt.subplots(1, 1) ax.plot(acc, label = "Accuracy") ax.plot(val_acc, label = "Validation Accuracy") ax.set_title('Model Accuracy') ax.legend(loc = "lower right") ax.set_xlim([0, 100]) ax.grid(b=True, which='major') ax.grid(b=True, which='minor') ax.set_ylabel("Accuracy") ax.set_xlabel("Epochs") ax.minorticks_on() plt.savefig(results_dir + '/' + label_col + '_acc.png') plt.show() return 0
if len(resY3): plt.plot(resx3, resY3) if len(resY4): plt.plot(resx4, resY4) (supX1, supY1, supX2, supY2, supX3, supY3, supX4, supY4, supSlope) = computeSupportLines(low, timestamp) plt.plot(supX1, supY1) plt.plot(supX2, supY2) if len(supY3): plt.plot(supX3, supY3) if len(supY4): plt.plot(supX4, supY4) sys, resYs = [supY1, supY3, supY4], [resY1, resY3, resY4] (supYmVal, ascDescVal, riseFallVal, avgTouches) = detectTriangle([supY1, supY3, supY4], [resY1, resY3, resY4], high, low) mins, maxs = computePivotPoints(high, low, timestamp) for x, y in maxs: ax.plot(x, y) for x, y in mins: ax.plot(x, y) ax.xaxis.set_major_locator(mticker.MaxNLocator(10)) plt.ylim(ymin=min(low), ymax=max(high) + max(high) * 0.05) ax.grid(True) plt.yscale('log') plt.xlabel('Date') plt.ylabel('Price') plt.title(args.symbol) plt.show()
def run(data): # update the data t,y = data if t>-1: xdata.append(t) ydata.append(y) #if t>xsize: # Scroll to the left. # ax.set_xlim(t-xsize, t) line.set_data(xdata, ydata) return line, def on_close_figure(event): sys.exit(0) data_gen.t = -1 fig = plt.figure() fig.canvas.mpl_connect('close_event', on_close_figure) ax = fig.add_subplot(111) line, = ax.plot([], linestyle='-.', lw=7, color = 'red') ax.set_ylim(0, 250) ax.set_xlim(0, 400) ax.grid() xdata, ydata = [], [] # Important: Although blit=True makes graphing faster, we need blit=False to prevent # spurious lines to appear when resizing the stripchart. ani = animation.FuncAnimation(fig, run, data_gen, blit=False, interval=100, repeat=False) plt.show()
def makeClocPlot(info_list, name): data = [] code_lines = [] comment_lines = [] comment_percentage_lines = [] comment_percentage_lines_max = [] comment_percentage_lines_min = [] debug_lines = [] debug_percentage_lines = [] debug_percentage_lines_max = [] debug_percentage_lines_min = [] #[print(cloc[x][0]) for x in range(0,5)] try: [ data.append(DT.datetime.strptime(info_list[index][0], "%Y_%m_%d")) for index in range(0, n_cloc) ] #[print(cloc[x][2]) for x in range(0,5)] except Exception as ex: print(ex) [code_lines.append(info_list[index][2]) for index in range(0, n_cloc)] [comment_lines.append(info_list[index][3]) for index in range(0, n_cloc)] [ comment_percentage_lines.append(info_list[index][5]) for index in range(0, n_cloc) ] [ comment_percentage_lines_max.append(info_list[index][6]) for index in range(0, n_cloc) ] [ comment_percentage_lines_min.append(info_list[index][8]) for index in range(0, n_cloc) ] [debug_lines.append(info_list[index][4]) for index in range(0, n_cloc)] [ debug_percentage_lines.append(info_list[index][10]) for index in range(0, n_cloc) ] [ debug_percentage_lines_max.append(info_list[index][11]) for index in range(0, n_cloc) ] [ debug_percentage_lines_min.append(info_list[index][13]) for index in range(0, n_cloc) ] lines = [] labels_fig = [] #dates = mpdates.date2num(data) dates = [] [dates.append(index) for index in range(0, n_cloc)] gs_top = plt.GridSpec(5, 1, top=0.95) fig, ((ax1, ax4), (ax2, ax5), (ax3, ax6)) = plt.subplots(3, 2, sharex=True, facecolor=light_grey_c) #, sharey=True) ax1.plot_date(dates, code_lines, 'r-', label="Code lines", lw=2, color=red_c) ax1.set_title("Code lines:", weight="bold") ax2.plot_date(dates, comment_lines, 'g-', label="Comment lines", lw=2, color=yell_c) ax2.set_title("Comment lines:", weight="bold") ax3.plot_date(dates, comment_percentage_lines, 'b-', label="Comment % lines", color=blue_c) ax3.plot_date(dates, comment_percentage_lines_max, 'b--', label="Comment % lines (max)", color=blue_c) ax3.plot_date(dates, comment_percentage_lines_min, 'b--', label="Comment % lines (min)", color=blue_c) ax4.axis('off') ax5.plot_date(dates, debug_lines, 'm-', label="Debug lines", lw=2, color=grey_c) ax5.set_title("Debug lines:", weight="bold") ax6.plot_date(dates, debug_percentage_lines, 'c-', label="Debug % lines", color=green_c) ax6.plot_date(dates, debug_percentage_lines_max, 'c--', label="Debug % lines (max)", color=green_c) ax6.plot_date(dates, debug_percentage_lines_min, 'c--', label="Debug % lines (min)", color=green_c) handles_all = [] labels_all = [] for ax in ax1, ax2, ax3, ax4, ax5, ax6: ax.grid(True) ax.margins(0.08) # 5% padding in all directions #ax.set_facecolor(light_grey_c) handles, labels = ax.get_legend_handles_labels() handles_all += handles labels_all += labels ax1.set_ylabel('Number of lines', weight="bold") ax2.set_ylabel('Number of lines', weight="bold") ax3.set_ylabel('Percentage', weight="bold") ax3.set_xlabel(' --> Time --> ', weight="bold") ax6.set_xlabel(' --> Time --> ', weight="bold") ax4.legend(handles_all[::1], labels_all[::1], loc="upper left", bbox_to_anchor=[0.15, 1.1], ncol=1, shadow=True, fancybox=True, fontsize=8) #fontsize : int or float or {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’} #title="Legend", #fig.suptitle(name) #fig.autofmt_xdate() fig.subplots_adjust(left=0.13, bottom=0.11, right=0.93, top=0.92, wspace=0.15, hspace=0.25) plt.xticks([]) plt.show() img_name = name img_name.replace(" ", "") img_name += ".png" fig.savefig(img_name, bbox_inches='tight')
#q_1 = np.mean(dec_1_q[a:b]) mag_0 = np.sqrt(i_0[s]**2 + q_0[s]**2) mag_1 = np.sqrt(i_1[s]**2 + q_1[s]**2) #mean_0_i.append(i_0) #mean_0_q.append(q_0) offset_0.append(mag_0) #mean_1_i.append(i_1) #mean_1_q.append(q_1) offset_1.append(mag_1) offset.append(mag_1 - mag_0) nsubs = 4 ax.grid(which='major') plt.subplot(nsubs, 1, 1) plt.plot(data) plt.title("Time domain audio wave") #data_fft = np.fft.fft(np.array(data)) #frequencies = np.abs(data_fft) #plt.subplot(nsubs,1,2) #plt.plot(frequencies) #plt.title("Frequencies found") #plt.xlim(0,20000) #plt.subplot(nsubs,1,2) #plt.title("IQ Decode") #plt.plot(range(nframes), dec_0_i, 'r', dec_0_q, 'g', dec_1_i, 'c', dec_1_q, 'b')