def export(): with pp(r"E:\Instagram\new.pdf") as new: g = f.Date_reported[10169:10315] h = f.New_cases[10169:10315] mt.plot(h, g, color="red", marker="o") mt.grid(True) mt.title("COVID-19 Daily Updates in INDIA") mt.ylabel("Date") mt.xlabel("No. of cases") new.savefig() mt.close()
def write(self, subdirectory, filename): pl.legend(fontsize="x-small", ncol=self.legend_columns, mode="expand", title=self.legend_title) if not self.pdf: pdf_path = os.path.join(self.get_base_path(), "all.pdf") self.pdf = pp(pdf_path) print("wrote: {}".format(pdf_path)) self.pdf.savefig(transparent=True) figure_path = self.get_full_path(subdirectory, filename) pl.savefig(figure_path) print("wrote: {}".format(figure_path)) pl.close('all')
def plot_throughput(args): df = pd.read_csv(args.csvfile) plot_groups = list(df.groupby(by=['testcase', 'symbol_size', 'type'])) if args.outfile: pdf = pp(args.outfile) # Group the plots for (test, symbol_size, type), df in plot_groups: def density_to_string(density): if not np.isnan(density): return "density {}".format(density) else: return "" # Combine the testcase and benchmark columns into one (used for labels) if not 'density' in df: df['test'] = df['testcase'].map(str) + '.' + df['benchmark'] df = df.drop(['testcase', 'benchmark'], axis=1) else: df['test'] = df['testcase'].map(str) + '.' + df['benchmark'] +\ ' ' + df['density'].map(density_to_string) df = df.drop(['testcase', 'benchmark', 'density'], axis=1) group = df.groupby(by=['test', 'symbols']) def compute_throughput(group): s = group['throughput'] s = pd.Series([s.mean(), s.std()], ['mean', 'std']) return s df = group.apply(compute_throughput) df = df.unstack(level=0) df['mean'].plot(title="Throughput {} {} p={}B".format( test, type, symbol_size), kind='bar') if args.outfile: pdf.savefig(transparent=True) if args.outfile: pdf.close() else: plt.show()
def plot_metric(df,metric,varying_parameter,fixed_parameters,cases,density): df_group = df.groupby(by=fixed_parameters) all_figures_filename = "all_" + density + "_" + metric + "_vs_" + \ varying_parameter + ".pdf" pdf = pp(all_figures_filename) for keys, group in df_group: p = group.pivot_table(metric,cols=cases,rows=varying_parameter).plot( kind=pltkind[(metric,varying_parameter)]) plt.title(get_plot_title(fixed_parameters,keys),fontsize=font_size) set_axis_properties(p,metric,varying_parameter,group) set_plot_legend(p,metric,varying_parameter) filename = get_filename(metric,varying_parameter, fixed_parameters,keys,density) plt.savefig(filename,bbox_inches='tight') pdf.savefig(bbox_inches='tight') plt.close() pdf.close()
def main(): usage = 'usage: %prog [options] ' parser = OptionParser(usage) parser.add_option('-r', dest='runName', default='spt6', type=str, help='Name of the run') parser.add_option( '-s', dest='save_path', type=str, default='/Users/umut/Projects/intragenicTranscription/results/') parser.add_option( '-a', dest='annotation', type=str, default= '/Users/umut/Projects/intragenicTranscription/data/annotation/ScerTSSannot.csv' ) parser.add_option("-o", action="store_true", dest="overwrite") (options, args) = parser.parse_args() # options.save_path = options.save_path+options.runName+'/peaks_motifs/' options.save_path = \ options.save_path + options.runName + '/peaks_motifs_p_thresh_0.05/' gdb = genome.db.GenomeDB( path='/Users/umut/Projects/genome/data/share/genome_db', assembly='sacCer3') # open data 'tracks' for DNase and MNase gerp = gdb.open_track('phyloP') pl.ioff() df = pd.read_csv(options.save_path + options.runName + '_intragenic_peaks.csv', index_col=0) consScoreSE = np.zeros((df[df['orientation'] == 'sense'].shape[0], 1000)) print('getting conservation score for sense') for i in tq(range(len(df[df['orientation'] == 'sense']))): chname = df[df['orientation'] == 'sense']['chr'].iloc[i] st = df[df['orientation'] == 'sense']['peak_position'].iloc[i] strand = df[df['orientation'] == 'sense']['strand'].iloc[i] if strand == '+': consScoreSE[i, :] = gerp.get_nparray(chname, st - 500 + 1, st + 500) else: consScoreSE[i, :] = np.flipud( gerp.get_nparray(chname, st - 500 + 1, st + 500)) consScoreAS = np.zeros( (df[df['orientation'] == 'antisense'].shape[0], 1000)) print('getting conservation score for antisense') for i in tq(range(len(df[df['orientation'] == 'antisense']))): chname = df[df['orientation'] == 'antisense']['chr'].iloc[i] st = df[df['orientation'] == 'antisense']['peak_position'].iloc[i] strand = df[df['orientation'] == 'antisense']['strand'].iloc[i] if strand == '-': consScoreAS[i, :] = gerp.get_nparray(chname, st - 500 + 1, st + 500) else: consScoreAS[i, :] = np.flipud( gerp.get_nparray(chname, st - 500 + 1, st + 500)) print('plotting...') pfile = pp(options.save_path + 'Figures/intragenic_conservation_sense.pdf') xran = np.arange(-500, 500) tmth = 0.1 for wn in [3, 50, 75]: fig = pl.figure() pl.plot(xran, tm(np.apply_along_axis(sm.smooth, 1, consScoreSE, wn)[:, (wn - 1):-(wn - 1)], tmth, axis=0), 'r', label='Sense') pl.xlabel('Position from intragenic TSS (bp)') pl.ylabel('Average GERP score (a.u.)') pl.title('Smoothing window: ' + str(wn) + 'bp') pl.legend(loc='center left', bbox_to_anchor=(1, 0.5)) pfile.savefig() pl.close(fig) pfile.close() pfile = pp(options.save_path + 'Figures/intragenic_conservation_antisense.pdf') xran = np.arange(-500, 500) tmth = 0.1 for wn in [3, 50, 75]: fig = pl.figure() pl.plot(xran, tm(np.apply_along_axis(sm.smooth, 1, consScoreAS, wn)[:, (wn - 1):-(wn - 1)], tmth, axis=0), 'r', label='Antisense') pl.xlabel('Position from intragenic TSS (bp)') pl.ylabel('Average GERP score (a.u.)') pl.title('Smoothing window: ' + str(wn) + 'bp') pl.legend(loc='center left', bbox_to_anchor=(1, 0.5)) pfile.savefig() pl.close(fig) pfile.close() np.savetxt(options.save_path + 'ConservationScoreGERP_sense.csv', consScoreSE) np.savetxt(options.save_path + 'ConservationScoreGERP_antisense.csv', consScoreAS) gerp.close()