def rhoplot(rho, axislabels=None, save=False): import matplotlib.pyplot as plt import matplotlib.colors as colors from mpl_toolkits.mplot3d import Axes3D # extract real and imaginary components of density matrix realrho = np.real(rho) imagrho = np.imag(rho) # instantiate new figure fig = plt.gcf() fig.canvas.set_window_title('Density Plot') #rax = Axes3D(fig) rax = fig.add_subplot(121, projection='3d') iax = fig.add_subplot(122, projection='3d') # set titles rax.title.set_text('Real$(\\rho)$') iax.title.set_text('Imag$(\\rho)$') # apply custom labelling if axislabels is not None: rax.set_xticklabels(axislabels) rax.set_yticklabels(axislabels) iax.set_xticklabels(axislabels) iax.set_yticklabels(axislabels) # dimension of space dim = np.shape(realrho)[0] # create indexing vectors x, y = np.meshgrid(range(0, dim), range(0, dim), indexing='ij') x = x.flatten('F') y = y.flatten('F') z = np.zeros_like(x) # create bar widths dx = 0.5*np.ones_like(z) dy = dx.copy() dzr = realrho.flatten() dzi = imagrho.flatten() # compute colour matrix for real matrix and set axes bounds norm = colors.Normalize(dzr.min(), dzr.max()) rcolours = cm.BuGn(norm(dzr)) rax.set_zlim3d([0, np.max(dzr)]) iax.set_zlim3d([0, np.max(dzr)]) inorm = colors.Normalize(dzi.min(), dzi.max()) icolours = cm.jet(inorm(dzi)) # plot image rax.bar3d(x, y, z, dx, dy, dzr, color=rcolours) iax.bar3d(x, y, z, dx, dy, dzi, color=icolours) #plt.ticklabel_format(style='sci', axis='z', scilimits=(0, 0)) plt.show()
norm = mcolors.BoundaryNorm(clevs, cmap.N) # In future MetPy # norm, cmap = ctables.registry.get_with_boundaries('precipitation', clevs) low = cm.GnBu_r(np.linspace(0, 0.75, 128)) mid = np.ones((30, 4)) high = cm.YlOrRd(np.linspace(0.0, 0.95, 128)) colors = np.vstack((low, mid, high)) bwr = LinearSegmentedColormap.from_list('my_colormap', colors) #, N=24) bwr.set_under = 'darkbrown' bwr.set_over = 'magenta' #bwr.set_bad = 'k' low = cm.YlOrBr_r(np.linspace(0, 0.9, 128)) mid = np.ones((30, 4)) high = cm.BuGn(np.linspace(0, 0.95, 128)) colors = np.vstack((low, mid, high)) drywet = LinearSegmentedColormap.from_list('my_colormap', colors) #, N=24) #fwrf1 = "./outputs/wrf3roms1/1-1-2/wrfout_d01_2019-09-06_00:00:00" #fwrf2 = "./outputs/wrf3roms1_adj_Qs/1-1-2/wrfout_d01_2019-09-06_00:00:00" minLon, maxLon, minLat, maxLat = [119, 130, 27, 40] hres = 0.1 lons = np.arange(minLon, maxLon + hres, hres) # analysis domain c overing [118.5, 128, 26.5, 42.] lats = np.arange(minLat, maxLat + hres, hres) plevs = np.arange(950, 250, -50) #[925, 900, 850, 700, 500, 300] print(plevs)
of the mesh grid data, see raven/tests/framework/AnalyticModels/optimizing/plot_functions.py. """ import pickle as pk import matplotlib.pyplot as plt from matplotlib import colors from matplotlib import cm from mpl_toolkits.mplot3d import axes3d, Axes3D from matplotlib import animation import numpy as np # load function data bX,bY,bZ = pk.load(open('dvalley_plotdata.pk','rb')) norm = plt.Normalize(bZ.min()-1, bZ.max()+5) colors = cm.BuGn(norm(bZ)) rcount, ccount, _ = colors.shape fig = plt.figure(figsize=(10,8)) ax = fig.gca(projection='3d') ax.view_init(70, 0) surf = ax.plot_surface(bX, bY, bZ, rcount=rcount, ccount=ccount, facecolors=colors,alpha=0.3) ax.set_xlabel('x') ax.set_ylabel('y') # load walk data cases = range(5) data = {} for c,case in enumerate(cases):
#rateVsSE = np.zeros(len( plt.subplots_adjust(hspace=0.35, wspace=0.3, top=0.95, bottom=0.05) pl.savefig("rate_effect_5trials_" + ref + ".pdf") pl.savefig("rate_effect_5trials_" + ref + ".jpg") #--------------------------------------------------- This plots the Supp Fig 4 ----------------------------------------------------------------- fig1 = pl.figure(2, figsize=(9, 16)) t1 = fig1.add_subplot(211) for i, x in enumerate(big_gpe_fr_lis_mult): t1.plot(x[0], big_gpe_spec_lis_mult[i][0], '.', color=cm.BuGn(float(i + 1) / len(big_gpe_fr_lis_mult)), markersize=13, label="Trial " + str(i + 1)) t1.plot(x, big_gpe_spec_lis_mult[i], '.', color=cm.BuGn(float(i + 1) / len(big_gpe_fr_lis_mult)), markersize=13) t1.set_title("GPe", fontsize=25, fontweight='bold') t1.set_ylabel("SE", fontsize=25, fontweight='bold') t1.legend(prop={"size": 10, "weight": "bold"}) for x in t1.get_yticklabels(): x.set_fontsize(15) x.set_fontweight('bold') for x in t1.get_xticklabels():