示例#1
0
 def gen_collection(self, ax):
     return mplc.CircleCollection(transOffset=ax.transData,
                                  offsets=self.offsets,
                                  sizes=self.sizes,
                                  edgecolor=self.edgecolor,
                                  facecolor=self.facecolor,
                                  zorder=self.zorder)
示例#2
0
def _draw_png_matplotlib(
    X,
    I,
    J,
    filepath,
    noderadius=0.2,
    linkwidth=0.05,
    width=1000,
    border=50,
    nodeopacity=1,
    linkopacity=1,
):
    import matplotlib.pyplot as plt
    import matplotlib.collections as mc

    fig = plt.figure(figsize=(width, width))
    ax = plt.axes()
    ax.set_xlim(min(X[:, 0]), max(X[:, 0]))
    ax.set_ylim(min(X[:, 1]), max(X[:, 1]))
    ax.axis("off")
    ax.set_aspect("equal", "box")

    # convert input data widths to display coordinates
    x_display_min, y_display_min = ax.transData.inverted().transform((0, 0))
    noderadius_disp, linkwidth_disp = ax.transData.transform(
        (x_display_min + noderadius, y_display_min + linkwidth))

    links = zip((X[i] for i in I), (X[j] for j in J))
    lc = mc.LineCollection(links,
                           linewidths=linkwidth_disp,
                           colors=(0, 0, 0, linkopacity))
    ax.add_collection(lc)

    cc = mc.CircleCollection(
        np.full(len(X), noderadius_disp * noderadius_disp),
        offsets=X,
        transOffset=ax.transData,
        linewidths=0,
        facecolors=(0, 0, 0, nodeopacity),
    )
    ax.add_collection(cc)

    border_data, _ = ax.transLimits.transform((border / width, 0))
    ax.set_xlim(
        min(X[:, 0]) - noderadius - border_data,
        max(X[:, 0]) + noderadius + border_data)
    ax.set_ylim(
        min(X[:, 1]) - noderadius - border_data,
        max(X[:, 1]) + noderadius + border_data)

    fig.savefig(
        filepath,
        dpi=1,
        bbox_inches="tight",
        format="png",
        transparent=True,
        origin="upper",
    )
示例#3
0
def test_set_offsets_late():
    identity = mtransforms.IdentityTransform()
    sizes = [2]

    null = mcollections.CircleCollection(sizes=sizes)

    init = mcollections.CircleCollection(sizes=sizes, offsets=(10, 10))

    late = mcollections.CircleCollection(sizes=sizes)
    late.set_offsets((10, 10))

    # Bbox.__eq__ doesn't compare bounds
    null_bounds = null.get_datalim(identity).bounds
    init_bounds = init.get_datalim(identity).bounds
    late_bounds = late.get_datalim(identity).bounds

    # offsets and transform are applied when set after initialization
    assert null_bounds != init_bounds
    assert init_bounds == late_bounds
示例#4
0
def LoadPlotandSave(filename, unknown=False, flip=False, legend=False):
    a = np.load(filename)
    newfilename = filename
    recon = a['ReconstructedObject']
    recon = recon[4:251, 4:251]
    recon_sorted = recon.copy().flatten()
    recon_sorted.sort()
    recon[recon > recon_sorted[-100]] = recon_sorted[-100]
    recon = np.fliplr(recon)
    cmaps = ['inferno']
    i = 0
    plt.imshow(recon**.5, cmap=cmaps[i])
    plt.show()
    imsave(newfilename[:-4] + '_Object.png', recon, cmap=cmaps[i])

    if unknown:
        Trajectory = a['Trajectory']
        print('Test')
        W_np = a['W_np']
        xpos = a['xpos']
        zpos = a['zpos']
        W_np_onehot = np.zeros((W_np.shape[0], 33 * 33))
        for i in range(W_np.shape[0]):
            W_np_onehot[i, np.argmax(W_np[i])] = 1
        W_np_onehot = np.reshape(W_np_onehot, (W_np.shape[0], 33, 33))

        W_np_zs = np.array(
            [np.nonzero(W_np_onehot[i])[0] for i in range(W_np.shape[0])])
        W_np_xs = np.array(
            [np.nonzero(W_np_onehot[i])[1] for i in range(W_np.shape[0])])
        if flip:
            W_np_xs = 32 - W_np_xs
        import matplotlib.collections as collections

        fig = plt.figure(num=None,
                         figsize=(4, 4),
                         dpi=200,
                         facecolor='w',
                         edgecolor='k')
        ax = fig.add_subplot(1, 1, 1)
        gt_call = plt.scatter(-zpos, xpos, s=10, c=(0, 0, 0))
        for i in range(W_np.shape[0]):
            min_alpha = .2
            max_alpha = .8
            alpha = min_alpha + (max_alpha - min_alpha) * i / W_np.shape[0]
            c = ((1 - i / W_np.shape[0]), 0, (i / W_np.shape[0]), alpha)
            if i == 0:
                init_call = ax.scatter(-W_np_zs[i] / 32. * .15,
                                       W_np_xs[i] / 32.,
                                       s=100,
                                       c=c)  #, alpha=alpha)
            else:
                final_call = ax.scatter(-W_np_zs[i] / 32. * .15,
                                        W_np_xs[i] / 32.,
                                        s=100,
                                        c=c)  #, alpha=alpha)
        alpha_start = min_alpha
        alpha_mid = min_alpha + (max_alpha - min_alpha) * np.floor(
            W_np.shape[0] / 2) / W_np.shape[0]
        alpha_end = min_alpha + (max_alpha - min_alpha) * (W_np.shape[0] -
                                                           1) / W_np.shape[0]
        c_start = ((1 - 0 / W_np.shape[0]), 0, (0 / W_np.shape[0]),
                   alpha_start)
        c_mid = ((1 - np.floor(W_np.shape[0] / 2) / W_np.shape[0]), 0,
                 np.floor(W_np.shape[0] / 2) / W_np.shape[0], alpha_mid)
        c_end = ((1 - (W_np.shape[0] - 1) / W_np.shape[0]), 0,
                 ((W_np.shape[0] - 1) / W_np.shape[0]), alpha_end)
        circles = collections.CircleCollection(
            sizes=[100, 100, 100], facecolors=[c_start, c_mid, c_end])
        circles.set_alpha(.5)
        frame1 = plt.gca()
        frame1.axes.get_xaxis().set_visible(False)
        frame1.axes.get_yaxis().set_visible(False)
        plt.savefig(newfilename[:-4] + '_Trajectory.png', bbox_inches="tight")
        if legend:
            leg = ax.legend((gt_call, circles), ('Truth', 'Estimate'),
                            fontsize='xx-large',
                            scatterpoints=3,
                            scatteryoffsets=[.5],
                            handlelength=2)
            plt.savefig(newfilename[:-4] + '_Trajectory_wLegend.png',
                        bbox_inches="tight")
        plt.show()
示例#5
0
文件: plot3.py 项目: abrahamtara/IFU
	data_text_file.write(", ")
	data_text_file.write(str(totalcolors[item]))
	data_text_file.write('\n')

data_text_file.close()

# make the figure!
fig = plt.figure()
ax = fig.add_subplot(111, xlim=(-80,80), ylim=(-80,80))

# point sizes for our circles? point size = 82, for 82 fibres
#pointsizes = [17.253]*82*num 
pointsizes = [82]*82*num 

# make a collection of circles
col = collections.CircleCollection(sizes=pointsizes, offsets=just_coordinates,
                                        transOffset=ax.transData)
trans = transforms.Affine2D().scale(fig.dpi/72.0) # one point is 1/72 inches
col.set_transform(trans)  # the points to pixels transform (from example)
ax.add_collection(col, autolim=True)
ax.autoscale_view()

# our colormap will be 'hot' in reverse, with outliers (-100) in green (but only if we're plotting line data)
cust_cm = cm.hot_r
cust_cm.set_bad('gray', -50) # -100 here is just the 'alpha' value for the colour, it isn't the outlier value

col.set_cmap(cust_cm)
col.set_norm(matplotlib.colors.Normalize())
col.set_edgecolors('black') # edge colours are an off-black hue 262626

# make a masked array from the data
if data_type != 'c':
        j += 1

    ax = plt.gca()
    format_ax(ax, "Degree", "Conservatinon score")
    plt.plot(range(xlim + 1), [0.5] * (xlim + 1),
             linewidth=3,
             c='grey',
             linestyle='-')
    #plt.plot(range(xlim), [0.25]*xlim, linewidth=2, c='grey', linestyle='-')

    network_patch = []
    if len(network_names) > 1:
        for row in patch_colors:
            network_patch.append(
                collections.CircleCollection([800] * len(row),
                                             facecolor=row,
                                             edgecolor='none'))
    else:  #single network, no need to show color circles
        network_patch.append(
            collections.CircleCollection([800],
                                         facecolor='none',
                                         edgecolor='none'))

    #---------------------------------------------------
    patch_colors = [x for x in zip(*patch_colors)]
    #---------------------------------------------------
    k = 0
    for row in patch_colors:
        patch_entries.append(
            collections.CircleCollection([200] * len(row),
                                         facecolor=row,