示例#1
0
文件: mc-tri.py 项目: droundy/deft
def animate(p):
  global count, centers, angles, coords, skip, colors, histogram, success, angle_histogram
  mc()
  density = histogram/leny/dx/count
  xnew, density = make_square(xcoords, density)
  line.set_ydata(density)
  ang_vals = angle_histogram/count/pi
  ax3.collections = []
  angplot = ax3.pcolormesh(x, theta, ang_vals, vmin=0, vmax=.01, edgecolors='face', cmap=cm.hot_r)
  #angplot = ax3.contourf(x, theta, ang_vals, levels=arange(0, .0105, .001), extend="max", rasterized=True)
  cbar_ax.collections = []
  cs = fig.colorbar(angplot, cax=cbar_ax, ticks=[])
  cs.cmap.set_over('k')
  cs.set_clim([0, .01])
  ax2.set_ylim(0, 0.8)
  for i in xrange(n):
    coords[i] = verts(centers[i], angles[i])
  coll = PolyCollection(coords)

  colors = zeros(n) + cdefault
  colors[0] = cspecial
  coll.set_color([cm.jet(val) for val in colors])
  ax.collections=[]
  ax.add_collection(coll)
  ax.set_title("Attempted: %6i, Successful: %6i" %(count*n, success))
  #fig.tight_layout()
  print p
  return line, ax2, ax3
示例#2
0
def poly3d(df, elev=0, azim=0, **pltkwds):
    ''' Written by evelyn, updated by Adam 12/1/12.'''

    xlabel, ylabel, title, pltkwds=pu.smart_label(df, pltkwds)    

    zlabel_def=''         
    zlabel=pltkwds.pop('zlabel', zlabel_def)   
    zs=df.columns

    verts=[zip(df.index, df[col]) for col in df]  #don't have to say df.columns
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
       
 ### Convert verts(type:list) to poly(type:mpl_toolkits.mplot3d.art3d.Poly3DCollection)  
 ### poly used in plotting function ax.add_collection3d to do polygon plot    
    cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
    poly = PolyCollection((verts), facecolors = [cc('b'), cc('g'), cc('r'),
                        cc('y'),cc('m'), cc('c'), cc('b'),cc('g'),cc('r'), cc('y')])
    poly.set_alpha(0.2)  
    
 ### zdir is the direction used to plot,here we use time so y axis
    ax.add_collection3d(poly, zs=zs, zdir='x')        
    ax.set_xlabel(xlabel) 
    ax.set_ylabel(ylabel)  #Y
    ax.set_zlabel(zlabel)   #data     
    ax.set_title(title)       

    ax.set_ylim3d(min(df.index), max(df.index))
    ax.set_xlim3d(min(df.columns), max(df.columns))    #x 
    ax.set_zlim3d(min(df.min()), max(df.max()))  #How to get absolute min/max of df values
    
    ax.view_init(elev, azim) 

    return ax
示例#3
0
def index_bar(ax, vals,
              facecolor='b', edgecolor='l',
              width=4, alpha=1.0, ):
    """
    Add a bar collection graph with height vals (-1 is missing).
    ax          : an Axes instance to plot to
    width       : the bar width in points
    alpha       : bar transparency
    """
    facecolors = (colorConverter.to_rgba(facecolor, alpha),)
    edgecolors = (colorConverter.to_rgba(edgecolor, alpha),)
    right = width/2.0
    left = -width/2.0
    bars = [ ( (left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1 ]
    sx = ax.figure.dpi * (1.0/72.0)  # scale for points
    sy = ax.bbox.height / ax.viewLim.height
    barTransform = Affine2D().scale(sx,sy)
    offsetsBars = [ (i, 0) for i,v in enumerate(vals) if v != -1 ]
    barCollection = PolyCollection(bars,
                                   facecolors   = facecolors,
                                   edgecolors   = edgecolors,
                                   antialiaseds = (0,),
                                   linewidths   = (0.5,),
                                   offsets      = offsetsBars,
                                   transOffset  = ax.transData,
                                   )
    barCollection.set_transform(barTransform)
    minpy, maxx = (0, len(offsetsBars))
    miny = 0
    maxy = max([v for v in vals if v!=-1])
    corners = (minpy, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()
    ax.add_collection(barCollection)
    return barCollection
def funDisplayDifferenceCurveIn3D(vecDigitLevel, inputData_x, dataToDisplay_y, xLabelText, yLabelText, zLabelText, titleText, figureName):
    '''
    Exactly the same as the function above, but in 3D, yes in 3D, it is the future here.
    '''
    fig = plt.figure()
    ax = fig.gca(projection='3d')

    cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.2)

    xs = inputData_x
    verts = []
    tabColor = []
    zs = vecDigitLevel
    for ii in np.arange(0,np.size(vecDigitLevel)):
        ys = dataToDisplay_y[ii,:]    
        ys[0], ys[-1] = 0, 0  
        verts.append(list(zip(xs, ys)))
        tabColor.append(list(cc(repr(vecDigitLevel[ii]/255.))))

    poly = PolyCollection(verts, facecolors = tabColor)
    poly.set_alpha(0.7)

    ax.add_collection3d(poly, zs=zs, zdir='y')
    ax.set_xlabel(xLabelText)#'level search')
    ax.set_xlim3d(0, 255)
    ax.set_ylabel(yLabelText)#'level tested')
    ax.set_ylim3d(-1, 256)
    ax.set_zlabel(zLabelText)#L difference')
    ax.set_zlim3d(0, 1)
    plt.title(titleText)#'Various difference curves in 3D')
    plt.draw()
    plt.savefig(figureName)# dirToSaveResults+prefixName+'_c1_2.png')
示例#5
0
    def __init__(self, ax, *args, **kw):
        self.ax = ax
        X, Y, U, V, C = self._parse_args(*args)
        self.X = X
        self.Y = Y
        self.N = len(X)
        self.scale = kw.pop('scale', None)
        self.headwidth = kw.pop('headwidth', 3)
        self.headlength = float(kw.pop('headlength', 5))
        self.headaxislength = kw.pop('headaxislength', 4.5)
        self.minshaft = kw.pop('minshaft', 1)
        self.minlength = kw.pop('minlength', 1)
        self.units = kw.pop('units', 'width')
        self.width = kw.pop('width', None)
        self.color = kw.pop('color', 'k')
        self.pivot = kw.pop('pivot', 'tail')
        kw.setdefault('facecolors', self.color)
        kw.setdefault('linewidths', (0,))
        PolyCollection.__init__(self, None, offsets=zip(X, Y),
                                       transOffset=ax.transData, **kw)
        self.polykw = kw
        self.set_UVC(U, V, C)
        self._initialized = False

        self.keyvec = None
        self.keytext = None
示例#6
0
文件: 495_wav3.py 项目: baallezx/dsp
def make_image(x):
	''' x wil be a matrix data structure. '''
	fig = plt.figure()
	ax = fig.gca(projection='3d')
#
	cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
#
	xs = np.arange(0, 10, 0.4)
	verts = x.get_verts('freq')
	for i in xrange(17):
		print verts[0][i],'\n'
	for i in xrange(17):
		print verts[1][i],'\n'
	zs = [0.0, 1.0, 2.0, 3.0]
#	for z in zs:
#		ys = np.random.rand(len(xs))
#		ys[0], ys[-1] = 0, 0
#		verts.append(list(zip(xs, ys)))
#	poly = PolyCollection(verts, facecolors = [cc('r'), cc('g'), cc('b'),cc('y')])
	poly = PolyCollection(verts)
	poly.set_alpha(0.3)
#	ax.add_collection3d(poly, zs=zs, zdir='y')
	ax.add_collection3d(poly, zs=zs, zdir='y')
#
	ax.set_xlabel('X')
	ax.set_xlim3d(0, 123456)
	ax.set_ylabel('Y')
	ax.set_ylim3d(0, 65536)
	ax.set_zlabel('Z')
	ax.set_zlim3d(0, 1000)
#
	plt.show()
示例#7
0
    def plotPolyArrayFunction(self,result):
        interval = ((self.endValue - self.startValue) / (self.polyNumber - 1))
        self.rr.reset()
        fig = plt.figure()
        ax = fig.gca(projection='3d')
        if self.startValue is None:
            self.startValue = self.rr.model[self.value]
        columnNumber = self.polyNumber + 1
        lastPoint = [self.endTime]
        firstPoint = [self.startTime]
        for i in range(int(columnNumber) - 1):
            lastPoint.append(0)
            firstPoint.append(0)
        lastPoint = np.array(lastPoint)
        firstPoint = np.array(firstPoint)
        zresult = np.vstack((result, lastPoint))
        zresult = np.vstack((firstPoint, zresult))
        zs = []
        result = []
        for i in range(int(columnNumber) - 1):
            zs.append(i)
            result.append(zip(zresult[:, 0], zresult[:, (i + 1)]))
        if self.color is None:
            poly = PolyCollection(result)
        else:
            if len(self.color) != self.polyNumber:
                self.color = self.colorCycle()
            poly = PolyCollection(result, facecolors=self.color, closed=False)

        poly.set_alpha(self.alpha)
        ax.add_collection3d(poly, zs=zs, zdir='y')
        ax.set_xlim3d(0, self.endTime)
        ax.set_ylim3d(0, (columnNumber - 1))
        ax.set_zlim3d(0, (self.endValue + interval))
        if self.xlabel == 'toSet':
            ax.set_xlabel('Time')
        elif self.xlabel:
            ax.set_xlabel(self.xlabel)
        if self.ylabel == 'toSet':
            ax.set_ylabel('Trial Number')
        elif self.ylabel:
            ax.set_ylabel(self.ylabel)
        if self.zlabel == 'toSet':
            ax.set_zlabel(self.value)
        elif self.zlabel:
            ax.set_zlabel(self.zlabel)
            #        ax.set_xlabel('Time') if self.xlabel is None else ax.set_xlabel(self.xlabel)
            #        ax.set_ylabel('Trial Number') if self.ylabel is None else ax.set_ylabel(self.ylabel)
            #        ax.set_zlabel(self.value) if self.zlabel is None else ax.set_zlabel(self.zlabel)
        if self.title is not None:
            ax.set_title(self.title)
        
        if not IPYTHON:
            plt.show()
        else:
            FILENAME = str(uuid.uuid4()) + ".png"
            plt.savefig(FILENAME)
            plt.close()
            imag = mpimg.imread(FILENAME)
            return(imag)
示例#8
0
 def draw(self, renderer):
     self._init()
     if self._new_UV:
         verts = self._make_verts(self.U, self.V)
         self.set_verts(verts)
         self._new_UV = False
     PolyCollection.draw(self, renderer)
示例#9
0
def visualizeHealPixMap(theMap, nest=True, title="map", norm=None, vmin=None, vmax=None, cmap=plt.cm.hot_r):
    
    from matplotlib.collections import PolyCollection
    from matplotlib.colors import Normalize
    nside = hp.npix2nside(theMap.size)
    mapValue = theMap[theMap != hp.UNSEEN]
    indices = np.arange(theMap.size)
    seenInds = indices[theMap != hp.UNSEEN]

    print "Building polygons from HEALPixel map."
    vertices = np.zeros( (seenInds.size, 4, 2) )
    print "Building polygons for "+str(seenInds.size)+" HEALPixels."
    for HPixel,i in zip(seenInds,xrange(seenInds.size)):
        corners = hp.vec2ang( np.transpose(hp.boundaries(nside,HPixel,nest=nest) ) )
        # HEALPix insists on using theta/phi; we in astronomy like to use ra/dec.
        vertices[i,:,0] = corners[1] *180./np.pi
        vertices[i,:,1] = 90.0 - corners[0] * 180/np.pi


    fig, ax = plt.subplots(figsize=(12,12))
    #coll = PolyCollection(vertices, array = mapValue, cmap = plt.cm.seismic, edgecolors='none')
    coll = PolyCollection(vertices, array=mapValue, cmap=cmap, edgecolors='none')
    coll.set_clim(vmin=vmin, vmax=vmax)
    ax.add_collection(coll)
    ax.set_title(title)
    ax.autoscale_view()
    fig.colorbar(coll,ax=ax)

    #ax.set_ylim([-60.2, -43])

    print "Writing to file: "+title+".png"
    fig.savefig(title+".png",format="png")
示例#10
0
	def __init__(self, start_ls, end_ls, y=0, width=0.001, x_offset=0, is_arrow=True, length_includes_head=True, \
		head_width=None, head_length=None, shape='full', overhang=0, \
		head_starts_at_zero=False,**kwargs):
		if head_width is None:
			head_width = 2 * width
		if head_length is None:
			head_length = 1/(2.0 * abs(end_ls[0]-start_ls[0]))

		distance = abs(end_ls[-1]-start_ls[0])
		if length_includes_head:
			length=distance
		else:
			length=distance+head_length
		
		no_of_blocks = len(start_ls)
		if not distance:
			verts_ls = [] #display nothing if empty
		else:
			"""
			start by drawing horizontal arrow, point (tip of the arrow) at (0,0). the whole arrow sticks on the x-axis (<=0 part)
			Notice: the XY -coordination is not the usual math coordination system. it's canvas coordination. (0,0) is top left. horizontal is y-axis. vertical is x-axis.
			start from the last block, reversely to the 1st block
			"""
			verts_ls = []
			for i in range(no_of_blocks):
				block_start = start_ls[i]
				block_end = end_ls[i]
				verts = [[block_start, width/2.0+y], [block_start, -width/2.0+y], [block_end, -width/2.0+y], [block_end, width/2.0+y]]
				
				verts_ls.append(verts)
		PolyCollection.__init__(self, verts_ls, **kwargs)
示例#11
0
def plot_series(time, variable, series, ylabel='Y', zlabel='Z', fromzero=False):
    figure = plt.figure()
    ax = figure.gca(projection='3d')

    globalmin = np.min(map(lambda trial: np.min(trial), series))
    globalmax = np.max(map(lambda trial: np.max(trial), series))

    def stub(trial):
        if not fromzero:
            trial = map(lambda x: x - globalmin, np.array(trial))
            trial[0] = 0

        trial[-1] = 0
        return np.array(trial)

    verts = map(lambda trial: zip(time, stub(trial)), series)
    poly = PolyCollection(np.array(verts), facecolors=map(lambda n: cm.jet(n), np.linspace(0, 1, len(series))))
    poly.set_alpha(0.7)

    if not fromzero:
        globalmax -= globalmin
        globalmin -= globalmin

    ax.add_collection3d(poly, zs=variable, zdir='y')
    ax.set_xlim3d(time[0], time[-1])
    ax.set_ylim3d(min(variable), max(variable))
    ax.set_zlim3d(globalmin, globalmax)

    ax.set_xlabel('Time (ms)')
    ax.set_ylabel(ylabel)
    ax.set_zlabel(zlabel)
示例#12
0
def plot4MainDir(degVector):
    fourDirVector = allDeg24Directions(degVector['Value'])
    pHours = 24 # periodo considerado
    sampling = 60 # 10min de amostragem
    base = pHours*60/sampling
    totDays = len(fourDirVector)/base  # Dias multiplo de 5, para graficos poly 3d
    days  = np.arange(totDays)+1
    hours = np.arange(0,pHours*60,sampling)
    meshTime, indices = np.meshgrid(hours, days)
    meshProfile = np.zeros(meshTime.shape)
    profileList = []
    ii = 1
    for i in range(totDays):
        dataPeriod = fourDirVector[i*base:ii*base]
        profileList.append( dataPeriod )
        ii +=1
    profileMatrix = np.array(profileList)
    for i in range( indices.shape[0] ):
        for j in range( indices.shape[1] ):
            meshProfile[(i,j)] = profileMatrix[(i,j)]

    fig = plt.figure()
    ax = fig.gca(projection='3d')
    X = meshTime
    Y = indices
    Z = meshProfile
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='coolwarm', alpha=0.8) # ou a linha abaixo
    ax.set_xlabel('minutos')
    ax.set_ylabel('dia')
    ax.set_zlabel(r'$^oC$')

    # Visao apenas dos perfis
    fig2 = plt.figure()
    ax2 = fig2.gca(projection='3d')
    cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
    verts = []
    cs = [cc('r'), cc('g'), cc('b'), cc('y'), cc('c')]*(totDays/5)
    k = 0
    for d in days:
        verts.append(list(zip(hours, meshProfile[k])))
        k += 1
    poly = PolyCollection(verts, facecolors = cs)
    poly.set_alpha(0.7)
    ax2.add_collection3d(poly, zs=days, zdir='y')

    """ OK! Mostra grafico de barras
    cs = ['r', 'g', 'b', 'y','c']*(totDays/5)
    k = 0
    for c, d in zip(cs, days):
        cc = [c]*len(hours)
        ax2.bar(hours, meshProfile[k], zs=d, zdir='y', color=cc, alpha=0.5)
        k += 1
    """
    ax2.set_xlabel('minutos')
    ax2.set_xlim3d(0, hours[-1])
    ax2.set_ylabel('dia')
    ax2.set_ylim3d(0, days[-1])
    ax2.set_zlabel('Dir')
    ax2.set_zlim3d(0, 360)
    plt.show()
示例#13
0
    def test_something(self):
        fig = plt.figure()
        ax = fig.gca(projection='3d')

        cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)

        xs = np.arange(0, 10, 0.4)
        verts = []
        zs = [0.0, 1.0, 2.0, 3.0]
        for z in zs:
            ys = np.random.rand(len(xs))
            ys[0], ys[-1] = 0, 0
            verts.append(list(zip(xs, ys)))

        poly = PolyCollection(verts, facecolors = [cc('r'), cc('g'), cc('b'),
                                                   cc('y')])
        poly.set_alpha(0.7)
        ax.add_collection3d(poly, zs=zs, zdir='y')

        ax.set_xlabel('Coordinate')
        ax.set_xlim3d(0, 10)
        ax.set_ylabel('hypothesis#')
        ax.set_ylim3d(-1, 4)
        ax.set_zlabel('Concentration')
        ax.set_zlim3d(0, 1)

        plt.show()
示例#14
0
    def init(self, view):

        cube_points = np.arange(0, 10, 0.4)
        verts = []

        # number of polygons
        figures_num = [0.0, 1.0, 2.0, 3.0]

        for z in figures_num:
            ys = np.random.rand(len(cube_points))
            ys[0], ys[-1] = 0, 0
            verts.append(list(zip(cube_points, ys)))

            
        poly = PolyCollection(verts, facecolors=[self.convert_color('r'), self.convert_color('g'), self.convert_color('b'),
                                                 self.convert_color('y')])
        poly.set_alpha(0.7)
        self.ax.add_collection3d(poly, zs=figures_num, zdir='y')

        self.ax.set_xlabel('X')
        self.ax.set_xlim3d(0, 10)
        self.ax.set_ylabel('Y')
        self.ax.set_ylim3d(-1, 4)
        self.ax.set_zlabel('Z')
        self.ax.set_zlim3d(0, 1)

        if view == "image":
            savefig('polygon.png')
            print "Image saved on tredify folder"
        else:
            plt.show()
示例#15
0
    def do_3d_projection(self, renderer):
        """
        Perform the 3D projection for this object.
        """
        # FIXME: This may no longer be needed?
        if self._A is not None:
            self.update_scalarmappable()
            self._facecolors3d = self._facecolors

        txs, tys, tzs = proj3d.proj_transform_vec(self._vec, renderer.M)
        xyzlist = [(txs[si:ei], tys[si:ei], tzs[si:ei])
                   for si, ei in self._segis]

        # This extra fuss is to re-order face / edge colors
        cface = self._facecolors3d
        cedge = self._edgecolors3d
        if len(cface) != len(xyzlist):
            cface = cface.repeat(len(xyzlist), axis=0)
        if len(cedge) != len(xyzlist):
            if len(cedge) == 0:
                cedge = cface
            else:
                cedge = cedge.repeat(len(xyzlist), axis=0)

        # if required sort by depth (furthest drawn first)
        if self._zsort:
            z_segments_2d = sorted(
                ((self._zsortfunc(zs), np.column_stack([xs, ys]), fc, ec, idx)
                 for idx, ((xs, ys, zs), fc, ec)
                 in enumerate(zip(xyzlist, cface, cedge))),
                key=lambda x: x[0], reverse=True)
        else:
            raise ValueError("whoops")

        segments_2d = [s for z, s, fc, ec, idx in z_segments_2d]
        if self._codes3d is not None:
            codes = [self._codes3d[idx] for z, s, fc, ec, idx in z_segments_2d]
            PolyCollection.set_verts_and_codes(self, segments_2d, codes)
        else:
            PolyCollection.set_verts(self, segments_2d, self._closed)

        self._facecolors2d = [fc for z, s, fc, ec, idx in z_segments_2d]
        if len(self._edgecolors3d) == len(cface):
            self._edgecolors2d = [ec for z, s, fc, ec, idx in z_segments_2d]
        else:
            self._edgecolors2d = self._edgecolors3d

        # Return zorder value
        if self._sort_zpos is not None:
            zvec = np.array([[0], [0], [self._sort_zpos], [1]])
            ztrans = proj3d.proj_transform_vec(zvec, renderer.M)
            return ztrans[2][0]
        elif tzs.size > 0 :
            # FIXME: Some results still don't look quite right.
            #        In particular, examine contourf3d_demo2.py
            #        with az = -54 and elev = -45.
            return np.min(tzs)
        else :
            return np.nan
示例#16
0
 def set_3d_properties(self):
     # Force the collection to initialize the face and edgecolors
     # just in case it is a scalarmappable with a colormap.
     self.update_scalarmappable()
     self._sort_zpos = None
     self.set_zsort(True)
     self._facecolors3d = PolyCollection.get_facecolors(self)
     self._edgecolors3d = PolyCollection.get_edgecolors(self)
示例#17
0
def multidraw(courbesA,courbesB):

    fig = plt.figure()
    ax = fig.gca(projection='3d')

    verts = []
    facecolor=[]
    for lacourbe in courbesA:
        xs=[]
        closepoly=[]
        for idx,X in enumerate(lacourbe):
            xs.append(idx)
            closepoly.append(0)
            xs.append(idx)
            closepoly.append(X)
            xs.append(idx+.3)
            closepoly.append(X)
            xs.append(idx+.3)
            closepoly.append(0)
        xs.append(0)
        closepoly.append(0)
            
        verts.append(list(zip(xs, closepoly)))
        facecolor.append(cc('b'))

    for lacourbe in courbesB:
        xs=[]
        closepoly=[]
        for idx,X in enumerate(lacourbe):
            xs.append(idx)
            closepoly.append(0)
            xs.append(idx)
            closepoly.append(X)
            xs.append(idx+.3)
            closepoly.append(X)
            xs.append(idx+.3)
            closepoly.append(0)
        xs.append(0)
        closepoly.append(0)
        
        verts.append(list(zip(xs, closepoly)))
        facecolor.append(cc('y'))
    
    print len(facecolor) ,len(verts)
     
    poly = PolyCollection(verts, facecolors=facecolor)
    zs = range(0,len(facecolor))
    poly.set_alpha(0.7)
    ax.add_collection3d(poly, zs=zs, zdir='y')
    
    ax.set_xlabel('X')
    ax.set_xlim3d(0,5)
    ax.set_ylabel('Y')
    ax.set_ylim3d(-1, len(verts))
    ax.set_zlabel('Z')
    ax.set_zlim3d(-3, 3)

    plt.show()
示例#18
0
 def set_data(self, zname, zdata, zcolor):
     if zdata!=None:
        if zname not in self.clts: #plottables['plotted']:#self.pd.list_data():
            clt=PolyCollection(zdata, alpha=0.5, antialiased=True)#, rasterized=False, antialiased=False)
            clt.set_color(colorConverter.to_rgba(zcolor))                
            self.clts[zname]=clt
            self.axe.add_collection(self.clts[zname], autolim=True)
        else:                
            self.clts[zname].set_verts(zdata)
示例#19
0
 def poly_plot(self, zname, zdata, zcolor=None):
     if zname not in self.clts:
         clt=PolyCollection(zdata, alpha=0.5, antialiased=True)
         if zcolor is not None:
             clt.set_color(zcolor) #colorConverter.to_rgba(zcolor))
         self.clts[zname]=clt
         self.axe.add_collection(self.clts[zname])
     else:
         self.clts[zname].set_verts(zdata)
示例#20
0
    def plotPolyArray(self):
        """Plots results as individual graphs parallel to each other in 3D space using results
        from graduatedSim().

        p.plotPolyArray()"""
        result = self.graduatedSim()
        interval = (self.endValue - self.startValue) / (self.polyNumber - 1)
        self.rr.reset()
        fig = plt.figure()
        ax = fig.gca(projection="3d")
        if self.startValue is None:
            self.startValue = self.rr.model[self.value]
        columnNumber = self.polyNumber + 1
        lastPoint = [self.endTime]
        firstPoint = [self.startTime]
        for i in range(int(columnNumber) - 1):
            lastPoint.append(0)
            firstPoint.append(0)
        lastPoint = np.array(lastPoint)
        firstPoint = np.array(firstPoint)
        zresult = np.vstack((result, lastPoint))
        zresult = np.vstack((firstPoint, zresult))
        zs = []
        result = []
        for i in range(int(columnNumber) - 1):
            zs.append(i)
            result.append(zip(zresult[:, 0], zresult[:, (i + 1)]))
        if self.color is None:
            poly = PolyCollection(result)
        else:
            if len(self.color) != self.polyNumber:
                self.color = self.colorCycle()
            poly = PolyCollection(result, facecolors=self.color, closed=False)

        poly.set_alpha(self.alpha)
        ax.add_collection3d(poly, zs=zs, zdir="y")
        ax.set_xlim3d(0, self.endTime)
        ax.set_ylim3d(0, (columnNumber - 1))
        ax.set_zlim3d(0, (self.endValue + interval))
        if self.xlabel == "toSet":
            ax.set_xlabel("Time")
        elif self.xlabel:
            ax.set_xlabel(self.xlabel)
        if self.ylabel == "toSet":
            ax.set_ylabel("Trial Number")
        elif self.ylabel:
            ax.set_ylabel(self.ylabel)
        if self.zlabel == "toSet":
            ax.set_zlabel(self.value)
        elif self.zlabel:
            ax.set_zlabel(self.zlabel)
        #        ax.set_xlabel('Time') if self.xlabel is None else ax.set_xlabel(self.xlabel)
        #        ax.set_ylabel('Trial Number') if self.ylabel is None else ax.set_ylabel(self.ylabel)
        #        ax.set_zlabel(self.value) if self.zlabel is None else ax.set_zlabel(self.zlabel)
        if self.title is not None:
            ax.set_title(self.title)
        plt.show()
示例#21
0
 def __init__(self, verts, *args, **kwargs):
     '''
     Create a Poly3DCollection.
     *verts* should contain 3D coordinates.
     Note that this class does a bit of magic with the _facecolors
     and _edgecolors properties.
     '''
     PolyCollection.__init__(self, verts, *args, **kwargs)
     self._zsort = 1
     self._sort_zpos = None
示例#22
0
文件: mapping.py 项目: amirneto/pysal
def map_poly_shp(shp, which='all', bbox=None):
    '''
    Create a map object from a polygon shape
    ...

    Arguments
    ---------

    shp             : iterable
                      PySAL polygon iterable (e.g.
                      shape object from `ps.open` a poly shapefile) If it does
                      not contain the attribute `bbox`, it must be passed
                      separately in `bbox`.
    which           : str/list
                      List of booleans for which polygons of the shapefile to
                      be included (True) or excluded (False)
    bbox            : None/list
                      [Optional. Default=None] List with bounding box as in a
                      PySAL object. If nothing is passed, it tries to obtain
                      it as an attribute from `shp`.

    Returns
    -------

    map             : PatchCollection
                      Map object with the polygons from the shape
                      This includes the attribute `shp2dbf_row` with the
                      cardinality of every polygon to its row in the dbf
                      (zero-offset)

    '''
    if not bbox:
        bbox = shp.bbox
    patches = []
    rows = []
    i = 0
    if which == 'all':
        for shape in shp:
            for ring in shape.parts:
                xy = np.array(ring)
                patches.append(xy)
                rows.append(i)
            i += 1
    else:
        for inwhich, shape in zip(which, shp):
            if inwhich:
                for ring in shape.parts:
                    xy = np.array(ring)
                    patches.append(xy)
                    rows.append(i)
                i += 1
    pc = PolyCollection(patches)
    _ = _add_axes2col(pc, bbox)
    pc.shp2dbf_row = rows
    return pc
示例#23
0
def volume_overlay(ax, opens, closes, volumes, colorup="k", colordown="r", width=4, alpha=1.0):
    """
    Add a volume overlay to the current axes.  The opens and closes
    are used to determine the color of the bar.  -1 is missing.  If a
    value is missing on one it must be missing on all

    ax          : an Axes instance to plot to
    width       : the bar width in points
    colorup     : the color of the lines where close >= open
    colordown   : the color of the lines where close <  open
    alpha       : bar transparency


    """

    r, g, b = colorConverter.to_rgb(colorup)
    colorup = r, g, b, alpha
    r, g, b = colorConverter.to_rgb(colordown)
    colordown = r, g, b, alpha
    colord = {True: colorup, False: colordown}
    colors = [colord[open < close] for open, close in zip(opens, closes) if open != -1 and close != -1]

    right = width / 2.0
    left = -width / 2.0

    bars = [((left, 0), (left, v), (right, v), (right, 0)) for v in volumes if v != -1]

    sx = ax.figure.dpi * (1.0 / 72.0)  # scale for points
    sy = (ax.bbox.ur().y() - ax.bbox.ll().y()) / (ax.viewLim.ur().y() - ax.viewLim.ll().y())

    barTransform = Affine2D().scaled(sx, sy)

    offsetsBars = [(i, 0) for i, v in enumerate(volumes) if v != -1]

    barCollection = PolyCollection(
        bars,
        facecolors=colors,
        edgecolors=((0, 0, 0, 1),),
        antialiaseds=(0,),
        linewidths=(0.5,),
        offsets=offsetsBars,
        transOffset=ax.transData,
    )
    barCollection.set_transform(barTransform)

    minpy, maxx = (0, len(offsetsBars))
    miny = 0
    maxy = max([v for v in volumes if v != -1])
    corners = (minpy, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()

    # add these last
    return barCollection
示例#24
0
    def do_3d_projection(self, renderer):
        '''
        Perform the 3D projection for this object.
        '''
        # FIXME: This may no longer be needed?
        if self._A is not None:
            self.update_scalarmappable()
            self._facecolors3d = self._facecolors

        txs, tys, tzs = proj3d.proj_transform_vec(self._vec, renderer.M)
        xyzlist = [(txs[si:ei], tys[si:ei], tzs[si:ei]) \
                for si, ei in self._segis]

        # This extra fuss is to re-order face / edge colors
        cface = self._facecolors3d
        cedge = self._edgecolors3d
        if len(cface) != len(xyzlist):
            cface = cface.repeat(len(xyzlist), axis=0)
        if len(cedge) != len(xyzlist):
            if len(cedge) == 0:
                cedge = cface
            cedge = cedge.repeat(len(xyzlist), axis=0)

        # if required sort by depth (furthest drawn first)
        if self._zsort:
            z_segments_2d = [(self._zsortfunc(zs), zip(xs, ys), fc, ec) for
                    (xs, ys, zs), fc, ec in zip(xyzlist, cface, cedge)]
            z_segments_2d.sort(cmp=lambda x, y: cmp(y[0], x[0]))
        else:
            raise ValueError, "whoops"

        segments_2d = [s for z, s, fc, ec in z_segments_2d]
        PolyCollection.set_verts(self, segments_2d)

        self._facecolors2d = [fc for z, s, fc, ec in z_segments_2d]
        if len(self._edgecolors3d) == len(cface):
            self._edgecolors2d = [ec for z, s, fc, ec in z_segments_2d]
        else:
            self._edgecolors2d = self._edgecolors3d

        # Return zorder value
        if self._sort_zpos is not None:
            zvec = np.array([[0], [0], [self._sort_zpos], [1]])
            ztrans = proj3d.proj_transform_vec(zvec, renderer.M)
            return ztrans[2][0]
        elif tzs.size > 0 :
            # FIXME: Some results still don't look quite right.
            #        In particular, examine contourf3d_demo2.py
            #        with az = -54 and elev = -45.
            return np.min(tzs)
        else :
            return np.nan
def plot():
    fig = plt.figure()
    axis = fig.add_subplot(1, 1, 1)

    col = PolyCollection(
        [], facecolors="none", edgecolors="red", linestyle="--", linewidth=1.2
    )
    col.set_zorder(1)
    axis.add_collection(col)
    axis.set_xlim(0.5, 2.5)
    axis.set_ylim(0.5, 2.5)
    axis.collections[0].set_verts([[[1, 1], [1, 2], [2, 2], [2, 1]]])
    return fig
示例#26
0
def plot_energy_3d(name, key_steps=50, filename=None):

    data = np.loadtxt('%s_energy.ndt' % name)

    if data.ndim == 1:
        data.shape = (1, -1)

    fig = plt.figure()
    ax = fig.gca(projection='3d')

    # image index
    xs = range(1, data.shape[1])

    steps = data[:, 0]

    each_n_step = int(len(steps) / key_steps)

    if each_n_step < 1:
        each_n_step = 1

    cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
    colors = [cc('r'), cc('g'), cc('b'), cc('y')]
    facecolors = []
    line_data = []
    energy_min = np.min(data[:, 1:])

    zs = []
    index = 0
    for i in range(0, len(steps), each_n_step):
        line_data.append(list(zip(xs, data[i, 1:] - energy_min)))
        facecolors.append(colors[index % 4])
        zs.append(data[i, 0])
        index += 1

    poly = PolyCollection(line_data, facecolors=facecolors, closed=False)
    poly.set_alpha(0.7)

    ax.add_collection3d(poly, zs=zs, zdir='x')

    ax.set_xlabel('Steps')
    ax.set_ylabel('images')
    ax.set_zlabel('Energy (J)')

    ax.set_ylim3d(0, len(xs) + 1)
    ax.set_xlim3d(0, int(data[-1, 0]) + 1)
    ax.set_zlim3d(0, np.max(data[:, 1:] - energy_min))

    if filename is None:
        filename = '%s_energy_3d.pdf' % name

    fig.savefig(filename)
示例#27
0
    def redraw(self):
        self._canvas.axes.grid(True, color='gray')
        # Set axis bounds
        ymin = ymax = None
        xmax = 0
        xmin = sys.maxint
        for curve in self._curves.values():
            data_x, _, _, range_y, c = curve
            if len(data_x) == 0:
                continue
            xmax = max(xmax, data_x[-1])
            xmin = min(xmin, data_x[0])
            if ymin is None:
                ymin = range_y[0]
                ymax = range_y[1]
            else:
                ymin = min(range_y[0], ymin)
                ymax = max(range_y[1], ymax)

            # pad the min/max
            # delta = max(ymax - ymin, 0.1)
            # ymin -= .05 * delta
            # ymax += .05 * delta

        if self._autoscroll and ymin is not None:
            self._canvas.axes.set_xbound(lower=xmin, upper=xmax)
            self._canvas.axes.set_zbound(lower=ymin, upper=ymax)
            self._canvas.axes.set_ybound(lower=0,
                                         upper=len(self._curves.keys()))
        # create poly object
        verts = []
        colors = []
        for curve_id in self._curves_verts.keys():
            (data_x, data_y) = self._curves_verts[curve_id]
            colors.append(self._curves[curve_id][4])
            if self._use_poly:
                verts.append([(xmin, ymin)] + list(zip(data_x, data_y))
                             + [(xmax, ymin)])
            else:
                verts.append(zip(data_x, data_y))
        line_num = len(self._curves.keys())
        if self._use_poly:
            poly = PolyCollection(verts, facecolors=colors, closed=False)
        else:
            poly = LineCollection(verts, colors=colors)
        poly.set_alpha(0.7)
        self._canvas.axes.cla()
        self._canvas.axes.add_collection3d(poly,
                                           zs=range(line_num), zdir='y')
        self._update_legend()
        self._canvas.draw()
示例#28
0
def plot_triangles(p, adjustLowerLeft=False, values=None, values_cmap=matplotlib.cm.jet, edgecolors='k'):
    """ Add mesh triangles to a pyplot plot
        
       @param p = object holding sww vertex information (from util.get_output)
       @param adjustLowerLeft = if TRUE, use spatial coordinates, otherwise use ANUGA internal coordinates     
       @param values = list or array of length(p.vols), or None. All triangles are assigned this value (for face plotting colors).
       @param values_cmap = colormap for faces [e.g. values_cmap = matplotlib.cm.get_cmap('spectral')]
       @param edgecolors = edge color for polygons (using matplotlib.colors notation). Use 'none' for no color
    """
    import matplotlib
    from matplotlib import pyplot as pyplot
    from matplotlib.collections import PolyCollection

    x0=p.xllcorner
    y0=p.yllcorner 

    # Make vertices for PolyCollection Object
    vertices = []
    for i in range(len(p.vols)):
        k1=p.vols[i][0]
        k2=p.vols[i][1]
        k3=p.vols[i][2]

        tri_coords = numpy.array([ [p.x[k1], p.y[k1]], [p.x[k2], p.y[k2]], [p.x[k3], p.y[k3]] ])
        if adjustLowerLeft:
            tri_coords[:,0] = tri_coords[:,0] + x0
            tri_coords[:,1] = tri_coords[:,1] + y0

        vertices.append(tri_coords)
     
    # Make PolyCollection 
    if values is None: 
        all_poly = PolyCollection( vertices, array = numpy.zeros(len(vertices)), 
            edgecolors=edgecolors)
        all_poly.set_facecolor('none')
    else:
        try:
            lv = len(values)
        except:
            values = numpy.array(len(p.vols)*[values])
            lv = len(values)

        msg = 'len(values) must be the same as len(p.vols) (or values can be a constant)'
        assert lv==len(p.vols), msg
        all_poly = PolyCollection( vertices, array = values, cmap = values_cmap, 
            edgecolors=edgecolors)

    # Add to plot
    # FIXME: To see the triangles, this might require that the user does
    # something else to the plot?
    pyplot.gca().add_collection(all_poly)
示例#29
0
文件: inspect.py 项目: DeDop/dedop
    def _waveform_3d(self, fig_type, zmin, zmax, alpha, cmap):
        fig = plt.figure(figsize=(10, 10))
        ax = fig.gca(projection='3d')

        num_times = self._inspector.num_times
        num_samples = self._inspector.num_samples
        if fig_type == 'surf':
            x = np.arange(0, num_samples)
            y = np.arange(0, num_times)
            x, y = np.meshgrid(x, y)
            z = self._inspector.waveform
            surf = ax.plot_surface(x, y, z, rstride=3, cstride=3, cmap=cmap, shade=True,
                                   linewidth=0, antialiased=False)
            # ax.zaxis.set_major_locator(LinearLocator(10))
            # ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
            fig.colorbar(surf, shrink=0.5, aspect=5)
        else:
            waveforms = []
            for y_index in range(num_times):
                waveform = np.ndarray(shape=(num_samples, 2), dtype=np.float64)
                waveform[:, 0] = np.arange(0, num_samples)
                waveform[:, 1] = self._inspector.waveform[y_index]
                waveforms.append(waveform)
            line_widths = [0.5] * num_times
            # TODO (forman, 20160725): check why cmap is not recognized
            if fig_type == 'poly':
                edge_colors = ((0.2, 0.2, 1., 0.7),) * num_times
                face_colors = ((1., 1., 1., 0.5),) * num_times
                collection = PolyCollection(waveforms, cmap=cmap,
                                            linewidths=line_widths,
                                            edgecolors=edge_colors,
                                            facecolors=face_colors)
            else:
                colors = ((0.2, 0.2, 1., 0.7),) * num_times
                collection = LineCollection(waveforms, cmap=cmap,
                                            linewidths=line_widths, colors=colors)
            collection.set_alpha(alpha)
            ax.add_collection3d(collection, zs=np.arange(0, num_times), zdir='y')

        wf_min, wf_max = self._inspector.waveform_range
        ax.set_xlabel('Echo Sample Index')
        ax.set_xlim3d(0, num_samples - 1)
        ax.set_ylabel('Time Index')
        ax.set_ylim3d(0, num_times - 1)
        ax.set_zlabel('Waveform')
        ax.set_zlim3d(zmin if zmin is not None else wf_min, zmax if zmax is not None else wf_max)

        if self._interactive:
            plt.show()
        else:
            self.savefig("fig-waveform-3d-%s.png" % fig_type)
示例#30
0
 def shape(self, height, yrange, rotated):
     g = rlg2mpl.Group()
     (X, Y, I) = (0, 1, 2)
     shapes = [self.shapes, self.rshapes][rotated]
     trans = TransformScalePart(g.combined_transform)
     artists = []
     for (motif, cvalues, offsets) in self.per_shape_values:
         shape = shapes[motif]
         a = PolyCollection([shape], closed=True,
             facecolors=cvalues, edgecolors=cvalues, offsets=offsets, 
             transOffset=g.combined_transform)
         g.add(a)
         a.set_transform(trans)
     return g
示例#31
0
    def __init__(self,
                 vars,
                 title=None,
                 limits={},
                 cmap=None,
                 colorbar='vertical',
                 axes=None,
                 figaspect='auto',
                 **kwlimits):
        """Creates a `Matplotlib2DViewer`.
        

        :Parameters:
          vars
            a `CellVariable` object.
          title
            displayed at the top of the `Viewer` window
          limits : dict
            a (deprecated) alternative to limit keyword arguments
          cmap
            the colormap. Defaults to `matplotlib.cm.jet`
          xmin, xmax, ymin, ymax, datamin, datamax
            displayed range of data. Any limit set to 
            a (default) value of `None` will autoscale.
          colorbar
            plot a colorbar in specified orientation if not `None`
          axes
            if not `None`, `vars` will be plotted into this Matplotlib `Axes` object
          figaspect
            desired aspect ratio of figure. If arg is a number, use that aspect
            ratio. If arg is 'auto', the aspect ratio will be determined from
            the Variable's mesh.
        """
        kwlimits.update(limits)
        AbstractMatplotlib2DViewer.__init__(self,
                                            vars=vars,
                                            title=title,
                                            figaspect=figaspect,
                                            cmap=cmap,
                                            colorbar=colorbar,
                                            axes=axes,
                                            **kwlimits)

        self.mesh = self.vars[0].mesh

        vertexIDs = self.mesh._orderedCellVertexIDs

        vertexCoords = self.mesh.vertexCoords

        xCoords = numerix.take(vertexCoords[0], vertexIDs)
        yCoords = numerix.take(vertexCoords[1], vertexIDs)

        polys = []

        for x, y in zip(xCoords.swapaxes(0, 1), yCoords.swapaxes(0, 1)):
            if hasattr(x, 'mask'):
                x = x.compressed()
            if hasattr(y, 'mask'):
                y = y.compressed()
            polys.append(zip(x, y))

        from matplotlib.collections import PolyCollection
        self.collection = PolyCollection(polys)
        self.collection.set_linewidth(0.5)
        try:
            self.axes.add_patch(self.collection)
        except:
            # PolyCollection not child of PatchCollection in matplotlib 0.98
            self.axes.add_collection(self.collection)

        xmin = self._getLimit('xmin', default=xCoords.min())
        xmax = self._getLimit('xmax', default=xCoords.max())
        ymin = self._getLimit('ymin', default=yCoords.min())
        ymax = self._getLimit('ymax', default=yCoords.max())

        self.axes.set_xlim(xmin=xmin, xmax=xmax)
        self.axes.set_ylim(ymin=ymin, ymax=ymax)

        self._plot()
示例#32
0
project = AggregationAPI(348, public_panoptes_connection=True)
subject_image = project.__image_setup__(subject_id)

for minimum_users in [8]:
    print minimum_users

    fig, ax = plt.subplots()

    image_file = cbook.get_sample_data(subject_image)
    image = plt.imread(image_file)
    # fig, ax = plt.subplots()
    im = ax.imshow(image)

    all_vertices = []

    with open("/tmp/348/4_ComplexAMOS/vegetation_polygons_heatmap.csv",
              "rb") as f:
        polygon_reader = csv.reader(f)
        next(polygon_reader, None)
        for row in polygon_reader:
            if int(row[1]) == minimum_users:
                vertices = json.loads(row[2])
                all_vertices.append(vertices)

    all_vertices = np.asarray(all_vertices)
    coll = PolyCollection(all_vertices, alpha=0.3)
    ax.add_collection(coll)
    ax.autoscale_view()

    plt.show()
示例#33
0
def volume_overlay(ax, opens, closes, volumes,
                   colorup='k', colordown='r',
                   width=4, alpha=1.0):
    """Add a volume overlay to the current axes.  The opens and closes
    are used to determine the color of the bar.  -1 is missing.  If a
    value is missing on one it must be missing on all

    Parameters
    ----------
    ax : `Axes`
        an Axes instance to plot to
    opens : sequence
        a sequence of opens
    closes : sequence
        a sequence of closes
    volumes : sequence
        a sequence of volumes
    width : int
        the bar width in points
    colorup : color
        the color of the lines where close >= open
    colordown : color
        the color of the lines where close <  open
    alpha : float
        bar transparency

    Returns
    -------
    ret : `barCollection`
        The `barrCollection` added to the axes

    """

    r, g, b = colorConverter.to_rgb(colorup)
    colorup = r, g, b, alpha
    r, g, b = colorConverter.to_rgb(colordown)
    colordown = r, g, b, alpha
    colord = {True: colorup,
              False: colordown,
              }
    colors = [colord[open < close]
              for open, close in zip(opens, closes)
              if open != -1 and close != -1]

    delta = width / 2.
    bars = [((i - delta, 0), (i - delta, v), (i + delta, v), (i + delta, 0))
            for i, v in enumerate(volumes)
            if v != -1]

    barCollection = PolyCollection(bars,
                                   facecolors=colors,
                                   edgecolors=((0, 0, 0, 1), ),
                                   antialiaseds=(0,),
                                   linewidths=(0.5,),
                                   )

    ax.add_collection(barCollection)
    corners = (0, 0), (len(bars), max(volumes))
    ax.update_datalim(corners)
    ax.autoscale_view()

    # add these last
    return barCollection
示例#34
0
            continue
        values = line.split()
        if not values:
            continue
        if values[0] == 'v':
            V.append([float(x) for x in values[1:4]])
        elif values[0] == 'f':
            F.append([int(x) for x in values[1:4]])
V, F = np.array(V), np.array(F) - 1

V = (V - (V.max(0) + V.min(0)) / 2) / max(V.max(0) - V.min(0))
V = np.c_[V, np.ones(len(V))] @ perspective(25, 1, 1, 100).T
V /= V[:, 3].reshape(-1, 1)
T = V[F][..., :2]

# Rendering
fig = plt.figure(figsize=(6, 6))
ax = fig.add_axes([0, 0, 1, 1],
                  xlim=[-1, +1],
                  ylim=[-1, +1],
                  aspect=1,
                  frameon=False)
collection = PolyCollection(T,
                            closed=True,
                            linewidth=0.1,
                            facecolor="None",
                            edgecolor="black")
ax.add_collection(collection)
plt.savefig("bunny-2.png", dpi=300)
plt.show()
示例#35
0
def plot_probe(probe, ax=None, contacts_colors=None,
               with_channel_index=False, with_contact_id=False,
               with_device_index=False, text_on_contact=None,
               first_index='auto',
               contacts_values=None, cmap='viridis',
               title=True, contacts_kargs={}, probe_shape_kwargs={},
               xlims=None, ylims=None, zlims=None,
               show_channel_on_click=False):
    """Plot a Probe object.
    Generates a 2D or 3D axis, depending on Probe.ndim

    Parameters
    ----------
    probe : Probe
        The probe object
    ax : matplotlib.axis, optional
        The axis to plot the probe on. If None, an axis is created, by default None
    contacts_colors : matplotlib color, optional
        The color of the contacts, by default None
    with_channel_index : bool, optional
        If True, channel indices are displayed on top of the channels, by default False
    with_contact_id : bool, optional
        If True, channel ids are displayed on top of the channels, by default False
    with_device_index : bool, optional
        If True, device channel indices are displayed on top of the channels, by default False
    text_on_contact: None or list or numpy.array
        Addintional text to plot on each contact
    first_index : str, optional
        The first index of the contacts, by default 'auto' (taken from channel ids)
    contacts_values : np.array, optional
        Values to color the contacts with, by default None
    cmap : str, optional
        [description], by default 'viridis'
    title : bool, optional
        If True, the axis title is set to the probe name, by default True
    contacts_kargs : dict, optional
        Dict with kwargs for contacts (e.g. alpha, edgecolor, lw), by default {}
    probe_shape_kwargs : dict, optional
        Dict with kwargs for probe shape (e.g. alpha, edgecolor, lw), by default {}
    xlims : tuple, optional
        Limits for x dimension, by default None
    ylims : tuple, optional
        Limits for y dimension, by default None
    zlims : tuple, optional
        Limits for z dimension, by default None
    show_channel_on_click : bool, optional
        If True, the channel information is shown upon click, by default False

    Returns
    -------
    poly : PolyCollection
        The polygon collection for contacts
    poly_contour : PolyCollection
        The polygon collection for the probe shape
    """
    import matplotlib.pyplot as plt
    if probe.ndim == 2:
        from matplotlib.collections import PolyCollection
    elif probe.ndim == 3:
        from mpl_toolkits.mplot3d.art3d import Poly3DCollection

    if ax is None:
        if probe.ndim == 2:
            fig, ax = plt.subplots()
            ax.set_aspect('equal')
        else:
            fig = plt.figure()
            ax = fig.add_subplot(1, 1, 1, projection='3d')
    else:
        fig = ax.get_figure()

    if first_index == 'auto':
        if 'first_index' in probe.annotations:
            first_index = probe.annotations['first_index']
        elif probe.annotations.get('manufacturer', None) == 'neuronexus':
            # neuronexus is one based indexing
            first_index = 1
        else:
            first_index = 0
    assert first_index in (0, 1)

    _probe_shape_kwargs = dict(
        facecolor='green', edgecolor='k', lw=0.5, alpha=0.3)
    _probe_shape_kwargs.update(probe_shape_kwargs)

    _contacts_kargs = dict(alpha=0.7, edgecolor=[0.3, 0.3, 0.3], lw=0.5)
    _contacts_kargs.update(contacts_kargs)

    n = probe.get_contact_count()

    if contacts_colors is None and contacts_values is None:
        contacts_colors = ['orange'] * n
    elif contacts_colors is not None:
        contacts_colors = contacts_colors
    elif contacts_values is not None:
        contacts_colors = None

    vertices = probe.get_contact_vertices()
    if probe.ndim == 2:
        poly = PolyCollection(
            vertices, color=contacts_colors, **_contacts_kargs)
        ax.add_collection(poly)
    elif probe.ndim == 3:
        poly = Poly3DCollection(
            vertices, color=contacts_colors, **_contacts_kargs)
        ax.add_collection3d(poly)

    if contacts_values is not None:
        poly.set_array(contacts_values)
        poly.set_cmap(cmap)

    if show_channel_on_click:
        assert probe.ndim == 2, 'show_channel_on_click works only for ndim=2'
        def on_press(event): return _on_press(probe, event)
        fig.canvas.mpl_connect('button_press_event', on_press)
        fig.canvas.mpl_connect('button_release_event', on_release)

    # probe shape
    planar_contour = probe.probe_planar_contour
    if planar_contour is not None:
        if probe.ndim == 2:
            poly_contour = PolyCollection(
                [planar_contour], **_probe_shape_kwargs)
            ax.add_collection(poly_contour)
        elif probe.ndim == 3:
            poly_contour = Poly3DCollection(
                [planar_contour], **_probe_shape_kwargs)
            ax.add_collection3d(poly_contour)
    else:
        poly_contour = None
    
    if text_on_contact is not None:
        text_on_contact = np.asarray(text_on_contact)
        assert text_on_contact.size == probe.get_contact_count()
        
    
    if with_channel_index or with_contact_id or with_device_index or text_on_contact is not None:
        if probe.ndim == 3:
            raise NotImplementedError('Channel index is 2d only')
        for i in range(n):
            txt = []
            if with_channel_index:
                txt.append(f'{i + first_index}')
            if with_contact_id and probe.contact_ids is not None:
                contact_id = probe.contact_ids[i]
                txt.append(f'id{contact_id}')
            if with_device_index and probe.device_channel_indices is not None:
                chan_ind = probe.device_channel_indices[i]
                txt.append(f'dev{chan_ind}')
            if text_on_contact is not None:
                txt.append(f'{text_on_contact[i]}')
            
            txt = '\n'.join(txt)
            x, y = probe.contact_positions[i]
            ax.text(x, y, txt, ha='center', va='center', clip_on=True)

    if xlims is None or ylims is None or (zlims is None and probe.ndim == 3):
        xlims, ylims, zlims = get_auto_lims(probe)

    ax.set_xlim(*xlims)
    ax.set_ylim(*ylims)

    if probe.si_units == "um":
        unit_str = "($\mu m$)"
    else:
        unit_str = f"({probe.si_units})"
    ax.set_xlabel(f'x {unit_str}', fontsize=15)
    ax.set_ylabel(f'y {unit_str}', fontsize=15)

    if probe.ndim == 3:
        ax.set_zlim(zlims)
        ax.set_zlabel('z')

    if probe.ndim == 2:
        ax.set_aspect('equal')

    if title:
        ax.set_title(probe.get_title())

    return poly, poly_contour
示例#36
0
def show_mesh_2d(axes,
                 mesh,
                 nodecolor='k',
                 edgecolor='k',
                 cellcolor='grey',
                 aspect='equal',
                 linewidths=1,
                 markersize=20,
                 showaxis=False,
                 showcolorbar=False,
                 cmap='gnuplot2',
                 box=None):

    try:
        axes.set_aspect(aspect)
    except NotImplementedError:
        pass

    if showaxis == False:
        axes.set_axis_off()
    else:
        axes.set_axis_on()

    if (type(nodecolor) is np.ndarray) & np.isreal(nodecolor[0]):
        cmax = nodecolor.max()
        cmin = nodecolor.min()
        norm = colors.Normalize(vmin=cmin, vmax=cmax)
        mapper = cm.ScalarMappable(norm=norm, cmap=cmap)
        nodecolor = mapper.to_rgba(nodecolor)

    if (type(cellcolor) is np.ndarray) & np.isreal(cellcolor[0]):
        cmax = cellcolor.max()
        cmin = cellcolor.min()
        norm = colors.Normalize(vmin=cmin, vmax=cmax)
        mapper = cm.ScalarMappable(norm=norm, cmap=cmap)
        mapper.set_array(cellcolor)
        cellcolor = mapper.to_rgba(cellcolor)
        if showcolorbar:
            f = axes.get_figure()
            f.colorbar(mapper, shrink=0.5, ax=axes)
    node = mesh.entity('node')
    cell = mesh.entity('cell')

    if mesh.meshtype not in {'polygon', 'hepolygon', 'halfedge', 'halfedge2d'}:
        if mesh.geo_dimension() == 2:
            poly = PolyCollection(node[cell[:, mesh.ds.ccw], :])
        else:
            poly = a3.art3d.Poly3DCollection(node[cell, :])
    else:
        cell, cellLocation = cell
        NC = mesh.number_of_cells()
        patches = [
            Polygon(node[cell[cellLocation[i]:cellLocation[i + 1]], :], True)
            for i in range(NC)
        ]
        poly = PatchCollection(patches)

    poly.set_edgecolor(edgecolor)
    poly.set_linewidth(linewidths)
    poly.set_facecolors(cellcolor)

    if box is None:
        if mesh.geo_dimension() == 2:
            box = np.zeros(4, dtype=np.float)
        else:
            box = np.zeros(6, dtype=np.float)

        box[0::2] = np.min(node, axis=0)
        box[1::2] = np.max(node, axis=0)

    axes.set_xlim(box[0:2])
    axes.set_ylim(box[2:4])

    if mesh.geo_dimension() == 3:
        axes.set_zlim(box[4:6])

    return axes.add_collection(poly)
示例#37
0
    B_wass[:, i] = ot.bregman.barycenter(A, M, reg, weights)

#%% plot interpolation

pl.figure(3)

cmap = pl.cm.get_cmap('viridis')
verts = []
zs = alpha_list
for i, z in enumerate(zs):
    ys = B_l2[:, i]
    verts.append(list(zip(x, ys)))

ax = pl.gcf().gca(projection='3d')

poly = PolyCollection(verts, facecolors=[cmap(a) for a in alpha_list])
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlabel('x')
ax.set_xlim3d(0, n)
ax.set_ylabel('$\\alpha$')
ax.set_ylim3d(0, 1)
ax.set_zlabel('')
ax.set_zlim3d(0, B_l2.max() * 1.01)
pl.title('Barycenter interpolation with l2')
pl.tight_layout()

pl.figure(4)
cmap = pl.cm.get_cmap('viridis')
verts = []
zs = alpha_list
示例#38
0
文件: fan.py 项目: sushma20b/davitpy
def overlayFan(myData,
               myMap,
               myFig,
               param,
               coords='geo',
               gsct=0,
               site=None,
               fov=None,
               gs_flg=[],
               fill=True,
               velscl=1000.,
               dist=1000.,
               cmap=None,
               norm=None,
               alpha=1):
    """A function of overlay radar scan data on a map

    Parameters
    ----------
    myData : pydarn.sdio.radDataTypes.scanData or
             pydarn.sdio.radDataTypes.beamData or
             list of pydarn.sdio.radDataTypes.beamData objects
        A radar beam object, a radar scanData object, or simply a list of
        radar beams
    myMap :
        The map we are plotting on
    myFig :
        Figure object that we are plotting to
    coords : Optional[str]
        The coordinates we are plotting in.  Default: geo
    param : Optional[str]
        The parameter to be plotted, valid inputs are 'velocity', 'power',
        'width', 'elevation', 'phi0'.  default = 'velocity
    gsct : Optional[boolean]
        A flag indicating whether we are distinguishing ground scatter.
        default = 0
    intensities : Optional[  ]
        A list of intensities (used for colorbar)
    fov : Optional[pydarn.radar.radFov.fov]
        A radar fov object
    gs_flg : Optional[  ]
        A list of gs flags, 1 per range gate
    fill : Optional[boolean]
        A flag indicating whether to plot filled or point RB cells.
        default = True
    velscl : Optional[float]
        The velocity to use as baseline for velocity vector length, only
        applicable if fill = 0.  default = 1000
    lines : Optional[  ]
        An array to have the endpoints of velocity vectors.  only applicable if
        fill = 0.  default = []
    dist : Optional [float]
        The length in map projection coords of a velscl length velocity vector.
        default = 1000. km

    Returns
    -------
    intensities

    pcoll

    lcoll


    Example
    -------
        overlayFan(aBeam,myMap,param,coords,gsct=gsct,site=sites[i],fov=fovs[i],
                   verts=verts,intensities=intensities,gs_flg=gs_flg)

    """
    from davitpy import pydarn
    if (site is None):
        site = pydarn.radar.site(radId=myData[0].stid, dt=myData[0].time)
    if (fov is None):
        fov = pydarn.radar.radFov.fov(site=site,
                                      rsep=myData[0].prm.rsep,
                                      ngates=myData[0].prm.nrang + 1,
                                      nbeams=site.maxbeam,
                                      coords=coords,
                                      date_time=myData[0].time)

    if (isinstance(myData, pydarn.sdio.beamData)): myData = [myData]

    gs_flg, lines = [], []
    if fill: verts, intensities = [], []
    else: verts, intensities = [[], []], [[], []]

    # loop through gates with scatter
    for myBeam in myData:
        for k in range(0, len(myBeam.fit.slist)):
            if myBeam.fit.slist[k] not in fov.gates: continue
            r = myBeam.fit.slist[k]

            if fill:
                x1, y1 = myMap(fov.lonFull[myBeam.bmnum, r],
                               fov.latFull[myBeam.bmnum, r])
                x2, y2 = myMap(fov.lonFull[myBeam.bmnum, r + 1],
                               fov.latFull[myBeam.bmnum, r + 1])
                x3, y3 = myMap(fov.lonFull[myBeam.bmnum + 1, r + 1],
                               fov.latFull[myBeam.bmnum + 1, r + 1])
                x4, y4 = myMap(fov.lonFull[myBeam.bmnum + 1, r],
                               fov.latFull[myBeam.bmnum + 1, r])

                # save the polygon vertices
                verts.append(
                    ((x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)))

                # save the param to use as a color scale
                if (param == 'velocity'):
                    intensities.append(myBeam.fit.v[k])
                elif (param == 'power'):
                    intensities.append(myBeam.fit.p_l[k])
                elif (param == 'width'):
                    intensities.append(myBeam.fit.w_l[k])
                elif (param == 'elevation' and myBeam.prm.xcf):
                    intensities.append(myBeam.fit.elv[k])
                elif (param == 'phi0' and myBeam.prm.xcf):
                    intensities.append(myBeam.fit.phi0[k])

            else:
                x1, y1 = myMap(fov.lonCenter[myBeam.bmnum, r],
                               fov.latCenter[myBeam.bmnum, r])
                verts[0].append(x1)
                verts[1].append(y1)

                x2, y2 = myMap(fov.lonCenter[myBeam.bmnum, r + 1],
                               fov.latCenter[myBeam.bmnum, r + 1])

                theta = math.atan2(y2 - y1, x2 - x1)

                x2, y2 = x1 + myBeam.fit.v[k] / velscl * (-1.0) * \
                    math.cos(theta) * dist, y1 + myBeam.fit.v[k] / velscl * \
                    (-1.0) * math.sin(theta) * dist

                lines.append(((x1, y1), (x2, y2)))
                # save the param to use as a color scale
                if (param == 'velocity'):
                    intensities[0].append(myBeam.fit.v[k])
                elif (param == 'power'):
                    intensities[0].append(myBeam.fit.p_l[k])
                elif (param == 'width'):
                    intensities[0].append(myBeam.fit.w_l[k])
                elif (param == 'elevation' and myBeam.prm.xcf):
                    intensities[0].append(myBeam.fit.elv[k])
                elif (param == 'phi0' and myBeam.prm.xcf):
                    intensities[0].append(myBeam.fit.phi0[k])

                if (myBeam.fit.p_l[k] > 0):
                    intensities[1].append(myBeam.fit.p_l[k])
                else:
                    intensities[1].append(0.)
            if (gsct):
                gs_flg.append(myBeam.fit.gflg[k])

    # do the actual overlay
    if (fill):
        # if we have data
        if (verts != []):
            if (gsct == 0):
                inx = numpy.arange(len(verts))
            else:
                inx = numpy.where(numpy.array(gs_flg) == 0)
                x = PolyCollection(
                    numpy.array(verts)[numpy.where(numpy.array(gs_flg) == 1)],
                    facecolors='.3',
                    linewidths=0,
                    zorder=5,
                    alpha=alpha)
                myFig.gca().add_collection(x, autolim=True)

            pcoll = PolyCollection(numpy.array(verts)[inx],
                                   edgecolors='face',
                                   linewidths=0,
                                   closed=False,
                                   zorder=4,
                                   alpha=alpha,
                                   cmap=cmap,
                                   norm=norm)
            # set color array to intensities
            pcoll.set_array(numpy.array(intensities)[inx])
            myFig.gca().add_collection(pcoll, autolim=True)
            return intensities, pcoll
    else:
        # if we have data
        if (verts != [[], []]):
            if (gsct == 0):
                inx = numpy.arange(len(verts[0]))
            else:
                inx = numpy.where(numpy.array(gs_flg) == 0)
                # plot the ground scatter as open circles
                x = myFig.scatter(
                    numpy.array(
                        verts[0])[numpy.where(numpy.array(gs_flg) == 1)],
                    numpy.array(
                        verts[1])[numpy.where(numpy.array(gs_flg) == 1)],
                    s=.1 * numpy.array(
                        intensities[1])[numpy.where(numpy.array(gs_flg) == 1)],
                    zorder=5,
                    marker='o',
                    linewidths=.5,
                    facecolors='w',
                    edgecolors='k')
                myFig.gca().add_collection(x, autolim=True)

            # plot the i-s as filled circles
            ccoll = myFig.gca().scatter(numpy.array(verts[0])[inx],
                                        numpy.array(verts[1])[inx],
                                        s=.1 *
                                        numpy.array(intensities[1])[inx],
                                        zorder=10,
                                        marker='o',
                                        linewidths=.5,
                                        edgecolors='face',
                                        cmap=cmap,
                                        norm=norm)

            # set color array to intensities
            ccoll.set_array(numpy.array(intensities[0])[inx])
            myFig.gca().add_collection(ccoll)
            # plot the velocity vectors
            lcoll = LineCollection(numpy.array(lines)[inx],
                                   linewidths=.5,
                                   zorder=12,
                                   cmap=cmap,
                                   norm=norm)
            lcoll.set_array(numpy.array(intensities[0])[inx])
            myFig.gca().add_collection(lcoll)

            return intensities, lcoll
示例#39
0
def swhglobl(swhs,
             nvrts,
             ncels,
             svrts,
             scels,
             colrs,
             config,
             mdlname='SMC',
             datx='2018010106',
             psfile='output.ps',
             paprtyp='a3'):
    """
    ##  Draw global swh plot with given polycollections and cell
    ##  array. Output as A3 ps file.        JGLi28Feb2019
    ##
    """

    # Degree to radian conversion parameter.
    d2rad = np.pi / 180.0

    # Global plot configuration parameters.
    rdpols = config[0]
    sztpxy = config[1]
    rngsxy = config[2]
    clrbxy = config[3]
    ncabgm = config[4]

    # Maximum mapping radius.
    radius = rdpols[0]
    pangle = rdpols[1]
    plon = rdpols[2]
    plat = rdpols[3]

    # Outline circle at equator
    ciran = np.arange(1081) * d2rad / 3.0
    xcirc = radius * np.cos(ciran)
    ycirc = radius * np.sin(ciran)

    # Set up wave height scale and marks with colrs.N.
    # colrs.N returns colrs' total number of colors 256.
    waveht, factor, residu, marks, ncstr, nclrm = scale_swh(nclrm=colrs.N)

    resmn1 = residu - 1.0
    nswh0 = ncstr + int(factor * np.log(-resmn1 + residu))
    #print (' factor, residu, resmn1, nswh0 = {} {} {} {: d}'
    #.format(factor, residu, resmn1, nswh0) )

    # Some constant variables for plots.
    xprop = {'xlim': rngsxy[0:2], 'xlabel': ''}
    yprop = {'ylim': rngsxy[2:4], 'ylabel': ''}

    if True:
        # Work out max and min values, excluding missing data (-999.0)
        cmax = swhs.max()
        cmin = swhs[swhs > -999.0].min()
        print(' swh range %f, %f' % (cmin, cmax))
        cmxs = 'SWHmx = %6.2f m' % cmax
        cmns = 'SWHmn = %10.3E' % cmin

        # Reset missing values (-999.0) to be -resmn1
        swhs[swhs < -resmn1] = -resmn1

        # Trim large values into plot range if any
        swhs[swhs > 32.0] = 32.0

        # Convert swhs with logarithm scale.
        icnf = np.rint(factor * np.log(swhs + residu))
        nswh = np.array(icnf, dtype=np.int)

        print(" Drawing " + psfile)
        # Set up first subplot and axis for northern hemisphere
        fig = plt.figure(figsize=sztpxy[0:2])
        ax1 = fig.add_subplot(1, 2, 1)
        ax1.set_aspect('equal')
        ax1.set_autoscale_on(False)
        ax1.set_axis_off()
        plt.subplots_adjust(left=0.02, bottom=0.02, right=0.98, top=0.95)
        plt.subplots_adjust(wspace=0.02, hspace=0.01)

        ax1.set(**xprop)
        ax1.set(**yprop)

        ax1.plot(xcirc, ycirc, 'b-')

        # Use loaded verts to setup PolyCollection.
        polynorth = PolyCollection(nvrts)

        # Create color array for this plot
        pcface = []
        pcedge = []
        for i in ncels:
            if (nswh[i] == nswh0):
                pcface.append(colrs(255))
                pcedge.append(colrs(0))
            else:
                pcface.append(colrs(nswh[i]))
                pcedge.append(colrs(nswh[i]))

        #smcpoly.set_color(pcolr)    ## This line defines both edge and face color.
        polynorth.set_facecolor(pcface)
        polynorth.set_edgecolor(pcedge)
        polynorth.set_linewidth(0.2)
        ax1.add_collection(polynorth)

        # Draw colorbar for ax1.
        xkeys, ykeys, clrply = colrboxy(clrbxy, colrs, marks)
        ax1.add_collection(clrply)
        for i in range(len(waveht)):
            m = marks[i]
            plt.text(xkeys[m],
                     ykeys[0] + 1.18 * (ykeys[1] - ykeys[0]),
                     str(waveht[i]),
                     horizontalalignment='center',
                     fontsize=11,
                     color='b')
            #rotation=-90,verticalalignment='center', fontsize=11, color='b' )

        plt.text(xkeys[marks[0]],
                 ykeys[0] + 2.2 * (ykeys[1] - ykeys[0]),
                 'SWH m',
                 horizontalalignment='left',
                 fontsize=15,
                 color='k')
        #rotation=-90,verticalalignment='center', fontsize=15, color='k' )

        # Southern hemisphere subplot.
        ax2 = fig.add_subplot(1, 2, 2)
        ax2.set_aspect('equal')
        ax2.axis('off')
        plt.subplots_adjust(left=0.02, bottom=0.02, right=0.98, top=0.95)
        plt.subplots_adjust(wspace=0.02, hspace=0.01)
        ax2.set(**xprop)
        ax2.set(**yprop)

        ax2.plot(xcirc, ycirc, 'b-')

        # Use loaded verts to set up PolyCollection.
        polysouth = PolyCollection(svrts)

        # Create color array for this plot
        pcface = []
        pcedge = []
        for i in scels:
            if (nswh[i] == nswh0):
                pcface.append(colrs(255))
                pcedge.append(colrs(0))
            else:
                pcface.append(colrs(nswh[i]))
                pcedge.append(colrs(nswh[i]))

        #   smcpoly.set_color(pcolr)    ## This line defines both edge and face color.
        polysouth.set_facecolor(pcface)
        polysouth.set_edgecolor(pcedge)
        polysouth.set_linewidth(0.2)
        ax2.add_collection(polysouth)

        # Put statistic information inside subplot ax2
        tpx = sztpxy[2]
        tpy = sztpxy[3]
        dpy = 0.6

        plt.text(tpx,
                 9.0,
                 mdlname + ' SWH',
                 horizontalalignment='center',
                 fontsize=19,
                 color='r')
        plt.text(tpx,
                 tpy + dpy * 1.0,
                 cmns,
                 horizontalalignment='center',
                 fontsize=15,
                 color='b')
        plt.text(tpx,
                 tpy + dpy * 2.0,
                 cmxs,
                 horizontalalignment='center',
                 fontsize=15,
                 color='r')
        plt.text(tpx,
                 tpy + dpy * 3.0,
                 datx,
                 horizontalalignment='center',
                 fontsize=17,
                 color='k')

        # Draw colorbar for ax2.
        xkeys, ykeys, clrply = colrboxy(clrbxy, colrs, marks)
        ax2.add_collection(clrply)
        for i in range(len(waveht)):
            m = marks[i]
            plt.text(xkeys[m],
                     ykeys[0] + 1.18 * (ykeys[1] - ykeys[0]),
                     str(waveht[i]),
                     horizontalalignment='center',
                     fontsize=13,
                     color='b')
            #rotation=-90,verticalalignment='center', fontsize=11, color='b' )

        plt.text(xkeys[marks[-1]],
                 ykeys[0] + 2.2 * (ykeys[1] - ykeys[0]),
                 'SWH m',
                 horizontalalignment='right',
                 fontsize=15,
                 color='k')
        #rotation=-90,verticalalignment='center', fontsize=15, color='k' )

        # Refresh subplots and save them.
        plt.subplots_adjust(wspace=0.02, hspace=0.01)

        plt.savefig(psfile,
                    dpi=None,
                    facecolor='w',
                    edgecolor='w',
                    orientation='landscape',
                    papertype=paprtyp,
                    format='ps')

        plt.close()
示例#40
0
def _gen2d3d(*args, **pltkwargs):
    # UPDATE
    """ Abstract layout for 2d plot.
    For convienence, a few special labels, colorbar and background keywords 
    have been implemented.  If these are not adequate, it one can add 
    custom colorbars, linelabels background images etc... easily just by 
    using respecitve calls to plot (plt.colorbar(), plt.imshow(), 
    plt.clabel() ); my implementations are only for convienences and
    some predefined, cool styles.
        
    countours: Number of desired contours from output.
    
    label: Predefined label types.  For now, only integer values 1,2.  Use plt.clabel to add a custom label.
    
    background: Integers 1,2 will add gray or autumn colormap under contour plot.  Use plt.imgshow() to generate
                custom background, or pass a PIL-opened image (note, proper image scaling not yet implemented).

    c_iso, r_iso: These control how man column and row iso lines will be projected onto the 3d plot.
                    For example, if c_iso=10, then 10 isolines will be plotted as columns, despite the actual length of the
                    columns.  Alternatively, one can pass in c_stride directly, which is a column step size rather than
                    an absolute number, and c_iso will be disregarded.
                    
                
    fill: bool (False)
        Fill between contour lines.

    **pltkwargs: Will be passed directly to plt.contour().

    Returns
    -------
    tuple: (Axes, SurfaceFunction)
        Returns axes object and the surface function (e.g. contours for
        contour plot.  Surface for surface plot.
    
    """

    # Use a label mapper to allow for datetimes in any plot x/y axis
    _x_dti = _ = _y_dti = False

    # Passed Spectra
    if len(args) == 1:
        ts = args[0]

        try:
            index = np.array([dates.date2num(x) for x in ts.index])
            _x_dti = True
        except AttributeError:
            index = ts.index.values  #VALUES NECESSARY FOR POLY CMAP

        try:
            cols = np.array([dates.date2num(x) for x in ts.columns])
            _y_dti = True
        except AttributeError:
            cols = ts.columns.values  #VALUES NECESSARY FOR POLY CMAP

        yy, xx = np.meshgrid(cols, index)

    # Passed xx, yy, ts/zz
    elif len(args) == 3:
        xx, yy, ts = args
        cols, index = ts.columns.values, ts.index.values

    else:
        raise PlotError(
            "Please pass a single spectra, or xx, yy, zz.  Got %s args" %
            len(args))

    # Boilerplate from basic_plots._genplot(); could refactor as decorator
    xlabel = pltkwargs.pop('xlabel', '')
    ylabel = pltkwargs.pop('ylabel', '')
    zlabel = pltkwargs.pop('zlabel', '')
    title = pltkwargs.pop('title', '')

    # Choose plot kind
    kind = pltkwargs.pop('kind', 'contour')
    grid = pltkwargs.pop('grid', '')
    #    pltkwargs.setdefault('legend', False) #(any purpose in 2d?)
    #   LEGEND FOR 2D PLOT: http://stackoverflow.com/questions/10490302/how-do-you-create-a-legend-for-a-contour-plot-in-matplotlib
    pltkwargs.setdefault('linewidth', 1)

    cbar = pltkwargs.pop('cbar', False)

    fig = pltkwargs.pop('fig', None)
    ax = pltkwargs.pop('ax', None)
    fill = pltkwargs.pop('fill', False)

    xlim = pltkwargs.pop('xlim', None)
    ylim = pltkwargs.pop('ylim', None)
    zlim = pltkwargs.pop('zlim', None)

    #Private attributes
    _modifyax = pltkwargs.pop('_modifyax', True)
    contours = pltkwargs.pop('contours', 6)
    label = pltkwargs.pop('label', None)

    projection = None

    if kind in PLOTPARSER.plots_3d:
        projection = '3d'

        elev = pltkwargs.pop('elev', 35)
        azim = pltkwargs.pop('azim', -135)

        view = pltkwargs.pop('view', None)
        if view:
            if view == 1:
                elev, azim = 35, -135
            elif view == 2:
                elev, azim = 35, -45
            elif view == 3:
                elev, azim = 20, -10  # Side view
            elif view == 4:
                elev, azim = 20, -170
            elif view == 5:
                elev, azim = 0, -90
            elif view == 6:
                elev, azim = 65, -90
            else:
                raise PlotError('View must be between 1 and 6; otherwise set'
                                ' "elev" and "azim" keywords.')

        # Orientation of zlabel (doesn't work...)
        _zlabel_rotation = 0.0
        if azim < 0:
            _zlabel_rotation = 90.0

        c_iso = pltkwargs.pop('c_iso', 10)
        r_iso = pltkwargs.pop('r_iso', 10)

        if c_iso > ts.shape[1] or c_iso < 0:
            raise PlotError('"c_iso" must be between 0 and %s, got "%s"' %
                            (ts.shape[1], c_iso))

        if r_iso > ts.shape[0] or r_iso < 0:
            raise PlotError('"r_iso" must be between 0 and %s, got "%s"' %
                            (ts.shape[0], r_iso))

        if c_iso == 0:
            cstride = 0
        else:
            cstride = _ir(ts.shape[1] / float(c_iso))

        if r_iso == 0:
            rstride = 0
        else:
            rstride = _ir(ts.shape[0] / float(r_iso))

        pltkwargs.setdefault('cstride', cstride)
        pltkwargs.setdefault('rstride', rstride)

    elif kind == 'contour':
        pass

    else:
        raise PlotError('_gen2d3d invalid kind: "%s".  '
                        'Choose from %s' % (kind, PLOTPARSER.plots_2d_3d))

    # Is this the best logic for 2d/3d fig?
    if not ax:
        f = plt.figure()
        #        ax = f.gca(projection=projection)
        ax = f.add_subplot(111, projection=projection)
        if not fig:
            fig = f

    labelsize = pltkwargs.pop('labelsize', 'medium')  #Can also be ints
    titlesize = pltkwargs.pop('titlesize', 'large')
    ticksize = pltkwargs.pop('ticksize',
                             '')  #Put in default and remove bool gate

    # PLT.CONTOUR() doesn't take 'color'; rather, takes 'colors' for now
    if 'color' in pltkwargs:
        if kind == 'contour':
            pltkwargs['colors'] = pltkwargs.pop('color')

    # Convienence method to pass in string colors
    if 'colormap' in pltkwargs:
        pltkwargs['cmap'] = pltkwargs.pop('colormap')

    if 'cmap' in pltkwargs:
        if isinstance(pltkwargs['cmap'], basestring):
            pltkwargs['cmap'] = pu.cmget(pltkwargs['cmap'])

    # Contour Plots
    # -------------

    # Broken background image
    ### More here http://matplotlib.org/examples/pylab_examples/image_demo3.html ###
    # Refactored with xx, yy instead of df.columns/index UNTESTED
    #if background:
    #xmin, xmax, ymin, ymax = xx.min(), xx.max(), yy.min(), yy.max()

    ## Could try rescaling contour rather than image:
    ##http://stackoverflow.com/questions/10850882/pyqt-matplotlib-plot-contour-data-on-top-of-picture-scaling-issue
    #if background==1:
    #im = ax.imshow(ts, interpolation='bilinear', origin='lower',
    #cmap=cm.gray, extent=(xmin, xmax, ymin, ymax))

    #### This will take a custom image opened in PIL or it will take plt.imshow() returned from somewhere else
    #else:
    #try:
    #im = ax.imshow(background)
    #### Perhaps image was not correctly opened
    #except Exception:
    #raise badvalue_error(background, 'integer 1,2 or a PIL-opened image')

    # Note this overwrites the 'contours' variable from an int to array
    if kind == 'contour' or kind == 'contour3d':
        if fill:
            mappable = ax.contourf(xx, yy, ts, contours,
                                   **pltkwargs)  #linewidths is a pltkwargs arg
        else:
            mappable = ax.contour(xx, yy, ts, contours, **pltkwargs)

        ### Pick a few label styles to choose from.
        if label:
            if label == 1:
                ax.clabel(inline=1, fontsize=10)
            elif label == 2:
                ax.clabel(levels[1::2], inline=1,
                          fontsize=10)  #label every second line
            else:
                raise PlotError(label, 'integer of value 1 or 2')

    elif kind == 'surf':
        mappable = ax.plot_surface(xx, yy, ts, **pltkwargs)
        #        pltkwargs.pop('edgecolors')
        wires = overload_plot_wireframe(ax, xx, yy, ts, **pltkwargs)
        #        print np.shape(wires._segments3d)
        wires = wire_cmap(wires, ax, cmap='jet')

    elif kind == 'wire':
        pltkwargs.setdefault('color', 'black')
        mappable = overload_plot_wireframe(ax, xx, yy, ts, **pltkwargs)

    elif kind == 'waterfall':

        edgecolors = pltkwargs.setdefault('edgecolors', None)
        pltkwargs.setdefault('closed', False)
        alpha = pltkwargs.setdefault('alpha', None)

        # Need to handle cmap/colors a bit differently for PolyCollection API
        if 'color' in pltkwargs:
            pltkwargs['facecolors'] = pltkwargs.pop('color')
        cmap = pltkwargs.setdefault('cmap', None)

        if alpha is None:  #as opposed to 0
            alpha = 0.6 * (13.0 / ts.shape[1])
            if alpha > 0.6:
                alpha = 0.6

        #Delete stride keywords
        for key in ['cstride', 'rstride']:
            try:
                del pltkwargs[key]
            except KeyError:
                pass

        # Verts are index dotted with data
        verts = []
        for col in ts.columns:
            values = ts[col]
            values[0], values[-1] = values.min().min(), values.min().min()
            verts.append(list(zip(ts.index, values)))

        mappable = PolyCollection(verts, **pltkwargs)

        if cmap:
            mappable.set_array(
                cols)  #If set array in __init__, autogens a cmap!
            mappable.set_cmap(pltkwargs['cmap'])

        mappable.set_alpha(alpha)

        #zdir is the direction used to plot; dont' fully understand
        ax.add_collection3d(mappable, zs=cols, zdir='x')

        # custom limits/labels polygon plot (reverse x,y)
        if not ylim:
            ylim = (max(index), min(index))  #REVERSE AXIS FOR VIEWING PURPOSES

        if not xlim:
            xlim = (min(cols), max(cols))  #x

        if not zlim:
            zlim = (min(ts.min()), max(ts.max())
                    )  #How to get absolute min/max of ts values

        # Reverse labels/DTI call for correct orientaion HACK HACK HACK
        xlabel, ylabel = ylabel, xlabel
        _x_dti, _y_dti = _y_dti, _x_dti
        azim = -1 * azim

    # General Features
    # ----------------

    # Some applications (like add_projection) shouldn't alther axes features
    if not _modifyax:
        return (ax, mappable)

    if cbar:
        # Do I want colorbar outside of fig?  Wouldn't be better on axes?
        try:
            fig.colorbar(mappable, ax=ax)
        except Exception:
            raise PlotError("Colorbar failed; did you pass a colormap?")

    if grid:
        ax.grid()

    # Format datetime axis
    # -------------------
    if _x_dti:
        ax.xaxis.set_major_formatter(mplticker.FuncFormatter(format_date))

        # Uncomment for custom 3d timestamp orientation
#       if projection:
#           for t1 in ax.yaxis.get_ticklabels():
#               t1.set_ha('right')
#               t1.set_rotation(30)
#           ax.yaxis._axinfo['label']['space_factor'] = _TIMESTAMPPADDING

    if _y_dti:
        ax.yaxis.set_major_formatter(mplticker.FuncFormatter(format_date))

        # Uncomment for custom 3d timestamp orientation
#      if projection:
#          for t1 in ax.yaxis.get_ticklabels():
#              t1.set_ha('right')
#              t1.set_rotation(30)
#          ax.yaxis._axinfo['label']['space_factor'] = _TIMESTAMPPADDING

    if xlim:
        ax.set_xlim3d(xlim)

    if ylim:
        ax.set_ylim3d(ylim)

    if zlim:
        ax.set_zlim3d(zlim)

    # Set elevation/azimuth for 3d plots
    if projection:
        ax.view_init(elev, azim)
        ax.set_zlabel(zlabel, fontsize=labelsize, rotation=_zlabel_rotation)

    ax.set_xlabel(xlabel, fontsize=labelsize)
    ax.set_ylabel(ylabel, fontsize=labelsize)
    ax.set_title(title, fontsize=titlesize)

    # Return Ax, contours/surface/polygons etc...
    return (ax, mappable)
示例#41
0
def triplot(mesh, axes=None, interior_kw={}, boundary_kw={}):
    r"""Plot a mesh with a different color for each boundary segment

    The interior and boundary keyword arguments can be any keyword argument for
    :class:`LineCollection <matplotlib.collections.LinecCollection>` and
    related types.

    :arg mesh: mesh to be plotted
    :arg axes: matplotlib :class:`Axes <matplotlib.axes.Axes>` object on which to plot mesh
    :arg interior_kw: keyword arguments to apply when plotting the mesh interior
    :arg boundary_kw: keyword arguments to apply when plotting the mesh boundary
    :return: list of matplotlib :class:`Collection <matplotlib.collections.Collection>` objects
    """
    gdim = mesh.geometric_dimension()
    tdim = mesh.topological_dimension()
    BoundaryCollection, InteriorCollection = _get_collection_types(gdim, tdim)
    quad = mesh.ufl_cell().cellname() == "quadrilateral"

    if axes is None:
        figure = plt.figure()
        if gdim == 3:
            axes = figure.add_subplot(111, projection='3d')
        else:
            axes = figure.add_subplot(111)

    coordinates = mesh.coordinates
    element = coordinates.function_space().ufl_element()
    if element.degree() != 1:
        # Interpolate to piecewise linear.
        V = VectorFunctionSpace(mesh, element.family(), 1)
        coordinates = interpolate(coordinates, V)

    coords = coordinates.dat.data_ro
    result = []
    interior_kw = dict(interior_kw)
    # If the domain isn't a 3D volume, draw the interior.
    if tdim <= 2:
        cell_node_map = coordinates.cell_node_map().values
        idx = (tuple(range(tdim + 1)) if not quad else (0, 1, 3, 2)) + (0, )
        vertices = coords[cell_node_map[:, idx]]

        interior_kw["edgecolors"] = interior_kw.get("edgecolors", "k")
        interior_kw["linewidths"] = interior_kw.get("linewidths", 1.0)
        if gdim == 2:
            interior_kw["facecolors"] = interior_kw.get("facecolors", "none")

        interior_collection = InteriorCollection(vertices, **interior_kw)
        axes.add_collection(interior_collection)
        result.append(interior_collection)

    # Add colored lines/polygons for the boundary facets
    facets = mesh.exterior_facets
    local_facet_ids = facets.local_facet_dat.data_ro
    exterior_facet_node_map = coordinates.exterior_facet_node_map().values
    topology = coordinates.function_space().finat_element.cell.get_topology()

    mask = np.zeros(exterior_facet_node_map.shape, dtype=bool)
    for facet_index, local_facet_index in enumerate(local_facet_ids):
        mask[facet_index, topology[tdim - 1][local_facet_index]] = True
    faces = exterior_facet_node_map[mask].reshape(-1, tdim)

    markers = facets.unique_markers
    color_key = "colors" if tdim <= 2 else "facecolors"
    boundary_colors = boundary_kw.pop(color_key, None)
    if boundary_colors is None:
        cmap = matplotlib.cm.get_cmap("Dark2")
        num_markers = len(markers)
        colors = cmap([k / num_markers for k in range(num_markers)])
    else:
        colors = matplotlib.colors.to_rgba_array(boundary_colors)

    boundary_kw = dict(boundary_kw)
    if tdim == 3:
        boundary_kw["edgecolors"] = boundary_kw.get("edgecolors", "k")
        boundary_kw["linewidths"] = boundary_kw.get("linewidths", 1.0)
    for marker, color in zip(markers, colors):
        face_indices = facets.subset(int(marker)).indices
        marker_faces = faces[face_indices, :]
        vertices = coords[marker_faces]
        _boundary_kw = dict(**{
            color_key: color,
            "label": marker
        }, **boundary_kw)
        marker_collection = BoundaryCollection(vertices, **_boundary_kw)
        axes.add_collection(marker_collection)
        result.append(marker_collection)

    # Dirty hack to enable legends for 3D volume plots. See the function
    # `Poly3DCollection.set_3d_properties`.
    for collection in result:
        if isinstance(collection, Poly3DCollection):
            collection._facecolors2d = PolyCollection.get_facecolor(collection)
            collection._edgecolors2d = PolyCollection.get_edgecolor(collection)

    _autoscale_view(axes, coords)
    return result
 ax = fig.gca(projection='3d')
 fig.set_tight_layout(True)
 fig.tight_layout(pad=10.4, w_pad=10.5, h_pad=11.0)
 
 def cc(arg):
     return mcolors.to_rgba(arg, alpha=0.6)
 
 xs = wl
 verts = []
 zs = [0.0, 1.0, 2.0, 3.0, 4.0]
 for z in zs:
     ys = dict_for_dyn[dyn_conc][int(z)][1:1500]
     ys[0], ys[-1] = 0, 0
     verts.append(list(zip(xs, ys)))
 
 poly = PolyCollection(verts, facecolors=[cc('r'), cc('g'), cc('b'),
                                          cc('y'), cc('r')])
 poly.set_alpha(0.4)
 ax.add_collection3d(poly, zs=zs, zdir='y')
 
 ax.set_xlabel('Wavelength, nm',labelpad=20)
 ax.set_xlim3d(200, 900)
 ax.set_ylabel('T',labelpad=20)
 ax.set_ylim3d(0, 4)
 ax.set_zlabel('I, Relative units',labelpad=20)
 ax.set_zlim3d(0, max(ys))
 
 if do_save == 1:
     fig.savefig(sna+'_Dynamic'+dyn_conc+'.jpg',transparent=False,dpi=300,bbox_inches="tight")    
 
 plt.show()
 
示例#43
0
def index_bar(ax, vals,
              facecolor='b', edgecolor='l',
              width=4, alpha=1.0, ):
    """Add a bar collection graph with height vals (-1 is missing).

    Parameters
    ----------
    ax : `Axes`
        an Axes instance to plot to
    vals : sequence
        a sequence of values
    facecolor : color
        the color of the bar face
    edgecolor : color
        the color of the bar edges
    width : int
        the bar width in points
    alpha : float
       bar transparency

    Returns
    -------
    ret : `barCollection`
        The `barrCollection` added to the axes

    """

    facecolors = (colorConverter.to_rgba(facecolor, alpha),)
    edgecolors = (colorConverter.to_rgba(edgecolor, alpha),)

    right = width / 2.0
    left = -width / 2.0

    bars = [((left, 0), (left, v), (right, v), (right, 0))
            for v in vals if v != -1]

    sx = ax.figure.dpi * (1.0 / 72.0)  # scale for points
    sy = ax.bbox.height / ax.viewLim.height

    barTransform = Affine2D().scale(sx, sy)

    offsetsBars = [(i, 0) for i, v in enumerate(vals) if v != -1]

    barCollection = PolyCollection(bars,
                                   facecolors=facecolors,
                                   edgecolors=edgecolors,
                                   antialiaseds=(0,),
                                   linewidths=(0.5,),
                                   offsets=offsetsBars,
                                   transOffset=ax.transData,
                                   )
    barCollection.set_transform(barTransform)

    minpy, maxx = (0, len(offsetsBars))
    miny = 0
    maxy = max([v for v in vals if v != -1])
    corners = (minpy, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()

    # add these last
    ax.add_collection(barCollection)
    return barCollection
示例#44
0
def volume_overlay3(ax, quotes,
                    colorup='k', colordown='r',
                    width=4, alpha=1.0):
    """Add a volume overlay to the current axes.  quotes is a list of (d,
    open, high, low, close, volume) and close-open is used to
    determine the color of the bar

    Parameters
    ----------
    ax : `Axes`
        an Axes instance to plot to
    quotes : sequence of (time, open, high, low, close, ...) sequences
        data to plot.  time must be in float date format - see date2num
    width : int
        the bar width in points
    colorup : color
        the color of the lines where close1 >= close0
    colordown : color
        the color of the lines where close1 <  close0
    alpha : float
         bar transparency

    Returns
    -------
    ret : `barCollection`
        The `barrCollection` added to the axes


    """

    r, g, b = colorConverter.to_rgb(colorup)
    colorup = r, g, b, alpha
    r, g, b = colorConverter.to_rgb(colordown)
    colordown = r, g, b, alpha
    colord = {True: colorup,
              False: colordown,
              }

    dates, opens, highs, lows, closes, volumes = list(zip(*quotes))
    colors = [colord[close1 >= close0]
              for close0, close1 in zip(closes[:-1], closes[1:])
              if close0 != -1 and close1 != -1]
    colors.insert(0, colord[closes[0] >= opens[0]])

    right = width / 2.0
    left = -width / 2.0

    bars = [((left, 0), (left, volume), (right, volume), (right, 0))
            for d, open, high, low, close, volume in quotes]

    sx = ax.figure.dpi * (1.0 / 72.0)  # scale for points
    sy = ax.bbox.height / ax.viewLim.height

    barTransform = Affine2D().scale(sx, sy)

    dates = [d for d, open, high, low, close, volume in quotes]
    offsetsBars = [(d, 0) for d in dates]

    useAA = 0,  # use tuple here
    lw = 0.5,   # and here
    barCollection = PolyCollection(bars,
                                   facecolors=colors,
                                   edgecolors=((0, 0, 0, 1),),
                                   antialiaseds=useAA,
                                   linewidths=lw,
                                   offsets=offsetsBars,
                                   transOffset=ax.transData,
                                   )
    barCollection.set_transform(barTransform)

    minpy, maxx = (min(dates), max(dates))
    miny = 0
    maxy = max([volume for d, open, high, low, close, volume in quotes])
    corners = (minpy, miny), (maxx, maxy)
    ax.update_datalim(corners)
    #print 'datalim', ax.dataLim.bounds
    #print 'viewlim', ax.viewLim.bounds

    ax.add_collection(barCollection)
    ax.autoscale_view()

    return barCollection
示例#45
0
 def set_verts(self, verts, closed=True):
     '''Set 3D vertices.'''
     self.get_vector(verts)
     # 2D verts will be updated at draw time
     PolyCollection.set_verts(self, [], closed)
示例#46
0
    def genPlot(self, ax=None, filled=False, plot_var=None, cax_kws=None,
            cb_kws=None, txtloc=None, center=False, dotsize=0.008, mapext=None,
            vmin=None, vmax=None, vint=None, txtSize=7, cbtxtSize=None,
            linewidth=0.1):
        """
        Generate plot for plot_var on SMC grid

        Args:
            ax (object):            axis object
            filled (bool):          fill cells or not
            plot_var (str):         the parameter need to be plotted, of which valules
                                    determine the filled color
            cax_kws (dict):         kws for colorbar location
            cb_kwds (dict):         kws for colobar
            txtloc (str):           loc of necessary text info. (x, y)
            center (bool):          draw dots in each cell
            dotsize (int):          the radius of Circles (for cell center dots)
            mapext  (list):         map bbox to zoom in the cartopy map
            vmin/vmax/vint (float): colorbar range/tick
        """
        if not hasattr(self, 'poly'):
            self._genPoly()

        # -- plot setting
        if plot_var.lower() == 'depth':
            norm = mpl.colors.LogNorm(vmin=1, vmax=10000, clip=False)
            cmap = cmocean.cm.deep
            cbtl = 'Depth [m]'
            cticks = [1, 10, 100, 1000, 10000]

        elif plot_var.lower() == 'swh':
            if vmin is None: vmin = 0.
            if vmax is None: vmax = 6.
            if vint is None: vint = 1.
            norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax, clip=False)
            cmap = plt.get_cmap('viridis')
            cbtl = 'SWH [m]'
            cticks = np.arange(vmin, vmax+.1*vint, vint)

        elif plot_var.lower() == 'sx' or plot_var.lower() == 'sy':
            filled = True
            norm = mpl.colors.Normalize(vmin=0., vmax=100., clip=False)
            cmap = plt.get_cmap('viridis')
            cbtl = 'Obs. in {:s} dirc. [%]'.format(plot_var.lower()[1])
            cticks = np.arange(0, 101, 20)

        elif plot_var.lower() == 'wspd':
            vmax = vmax if vmax else 40
            vmin = vmin if vmin else 0.
            vint = vint if vint else 10.
            cmap = plt.get_cmap('plasma')
            norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax, clip=False)
            cbtl = 'Wind [m/s]'
            cticks = np.arange(vmin, vmax+.1*vint, vint)

        else:
            pass

        facecolor = None if filled else 'none'

        # -- cells
        if self.proj is not None:
            polyc = PolyCollection(self.poly, cmap=cmap, norm=norm,
                    linewidth=linewidth, facecolor=facecolor)
        else:
            polyc = PolyCollection(self.poly, cmap=cmap, norm=norm,
                    linewidth=linewidth, facecolor=facecolor,
                    transform=ccrs.PlateCarree())
        polyc.set_edgecolor('face')
        polyc.set_array(ma.masked_equal(getattr(self, plot_var), -999999))
        ax.add_collection(polyc)

        # -- center dot of each cell
        # -- use 'o' or 's' to replace '.'
        if center: # use very small size for scatter/marker
            ax.scatter(self.clon, self.clat, s=dotsize, c=getattr(self,
                plot_var), marker='o', norm=norm, cmap=cmap,
                transform=ccrs.PlateCarree())

#            circlec = PatchCollection([Circle((x, y), radius=radius)
#                                       for x, y in np.c_[self.clon, self.clat]],
#                                      edgecolor='none', cmap=cmap, norm=norm,
#                                      transform=ccrs.PlateCarree())
#            circlec.set_array(getattr(self, plot_var))
#            ax.add_collection(circlec)

        # -- lim axis
        ax.autoscale_view() # !!! Very important

        if mapext is not None:
            ax.set_extent(mapext, crs=ccrs.PlateCarree())

        # -- colorbar
        if cax_kws is None: cax_kws = dict()
        btr = None if cax_kws.get('bbox_to_anchor') is None else ax.transAxes

        cax = inset_axes(ax,
                         width=cax_kws.get('width', '40%'),
                         height=cax_kws.get('height', '3%'),
                         loc=cax_kws.get('loc', 2), # upper right
                         bbox_to_anchor=cax_kws.get('bbox_to_anchor', None),
                         bbox_transform=btr,
                         borderpad=cax_kws.get('borderpad', None))  # units: fontsize
                         #borderpad=cax_kws.get('borderpad', 2.))  # units: fontsize

        # This is causing a crash for some reason...
        if cb_kws is None: cb_kws=dict()
        cb = plt.colorbar(polyc, cax=cax, format='%d',
                          orientation=cb_kws.get('orientation', 'horizontal'))
        cb.set_label(cbtl, size=txtSize)
        cb.set_ticks(cticks)
        if cbtxtSize is None: cbtxtSize = txtSize - 1
        cb.ax.tick_params(labelsize=cbtxtSize)

        # -- cell info.
        if plot_var in ['depth', 'sx', 'sy']:
            info = ('{:s}\n'
                    r'$\longmapsto$'
                    '\n  NL = {:d}\n  N1 = {:d}\n  N2 = {:d}\n  N4 = {:d}').format(
                    self.gid, self.NL, self.N1, self.N2, self.N4)

        if plot_var in ['swh', 'wspd']:
            try:
                timeStr = self.time.strftime('%Y-%m-%d %HZ')
            except:
                timeStr = str(self.time)

            info = '{:s}\n    Max: {:.1f}\n    Min: {:.1f}'.format(
                    timeStr, getattr(self, plot_var).max(), getattr(self, plot_var).min())

        if txtloc is None: txtloc = (0.1, 0.85)
        ax.text(txtloc[0], txtloc[1], info, ha='left',
                va='top', multialignment='left', transform=ax.transAxes,
                fontsize=txtSize, color='k')
示例#47
0
 def __init__(self, map, mask, nest=False, **kwargs):
     nside = healpix.npix2nside(len(mask))
     self.v = pix2quad(nside, mask.nonzero()[0], nest)
     PolyCollection.__init__(self, self.v, array=map[mask], **kwargs)
示例#48
0
def colrboxy(cboxy, colrmap, marks, ncstr=0, nclrm=256):
    """
    Generate a colour bar polycollection with given key box 
    cboxy=[x, y, dx, dy] and colormap, plus marks.
    The colour index arrays will generated out of given colormap.

                  JGLi01Mar2019 
    """

    ##  Input variables include x, y as Numpy Arrays or lists for the
    ##  colorbar locations, the colormap to be plotted, integer list
    ##  or Numpy Array marks for key scale ticks as enlarged polygon.
    ##  Tick labels should be added outside this program when the
    ##  colorbar PolyCollection is drawn in a corresponding plot.

    ## Workout color bar orientaion by x and y sizes
    ## and generate poly verts and colors.
    x0 = cboxy[0]
    y0 = cboxy[1]
    bx = cboxy[2]
    by = cboxy[3]
    verts = []
    pcolr = []
    ic = ncstr

    if (bx > by):  ## Horizontal color bar
        dx = bx / nclrm
        xkeys = np.arange(nclrm) * dx + x0
        ykeys = np.array([y0, y0 + by])
        syc = [y0, y0, y0 + by, y0 + by]
        for xi in xkeys:
            sxc = [xi, xi + dx, xi + dx, xi]
            verts.append(list(zip(sxc, syc)))
            pcolr.append(colrmap(ic))
            ic += 1

        dm = 1.1 * by
        sym = [y0, y0, y0 + dm, y0 + dm]
        for i in marks:
            xi = xkeys[i]
            sxc = [xi, xi + dx, xi + dx, xi]
            verts.append(list(zip(sxc, sym)))
            pcolr.append(colrmap(i))

    else:  ## Vertical color bar
        dy = by / nclrm
        xkeys = np.array([x0, x0 + bx])
        ykeys = np.arange(nclrm) * dy + y0
        sxc = [x0, x0 + bx, x0 + bx, x0]
        for yj in ykeys:
            syc = [yj, yj, yj + dy, yj + dy]
            verts.append(list(zip(sxc, syc)))
            pcolr.append(colrmap(ic))
            ic += 1

        dm = 1.1 * bx
        sxm = [x0, x0 + dm, x0 + dm, x0]
        for j in marks:
            yj = ykeys[j]
            syc = [yj, yj, yj + dy, yj + dy]
            verts.append(list(zip(sxm, syc)))
            pcolr.append(colrmap(j))

    ## Generate PolyCollection
    cbarpoly = PolyCollection(verts)
    cbarpoly.set_color(pcolr)

    return (xkeys, ykeys, cbarpoly)
示例#49
0
class Matplotlib2DViewer(AbstractMatplotlib2DViewer):
    """
    Displays a contour plot of a 2D `CellVariable` object.    

    The `Matplotlib2DViewer` plots a 2D `CellVariable` using Matplotlib_.

    .. _Matplotlib: http://matplotlib.sourceforge.net/
    """

    __doc__ += AbstractMatplotlib2DViewer._test2Dirregular(
        viewer="Matplotlib2DViewer")

    def __init__(self,
                 vars,
                 title=None,
                 limits={},
                 cmap=None,
                 colorbar='vertical',
                 axes=None,
                 figaspect='auto',
                 **kwlimits):
        """Creates a `Matplotlib2DViewer`.
        

        :Parameters:
          vars
            a `CellVariable` object.
          title
            displayed at the top of the `Viewer` window
          limits : dict
            a (deprecated) alternative to limit keyword arguments
          cmap
            the colormap. Defaults to `matplotlib.cm.jet`
          xmin, xmax, ymin, ymax, datamin, datamax
            displayed range of data. Any limit set to 
            a (default) value of `None` will autoscale.
          colorbar
            plot a colorbar in specified orientation if not `None`
          axes
            if not `None`, `vars` will be plotted into this Matplotlib `Axes` object
          figaspect
            desired aspect ratio of figure. If arg is a number, use that aspect
            ratio. If arg is 'auto', the aspect ratio will be determined from
            the Variable's mesh.
        """
        kwlimits.update(limits)
        AbstractMatplotlib2DViewer.__init__(self,
                                            vars=vars,
                                            title=title,
                                            figaspect=figaspect,
                                            cmap=cmap,
                                            colorbar=colorbar,
                                            axes=axes,
                                            **kwlimits)

        self.mesh = self.vars[0].mesh

        vertexIDs = self.mesh._orderedCellVertexIDs

        vertexCoords = self.mesh.vertexCoords

        xCoords = numerix.take(vertexCoords[0], vertexIDs)
        yCoords = numerix.take(vertexCoords[1], vertexIDs)

        polys = []

        for x, y in zip(xCoords.swapaxes(0, 1), yCoords.swapaxes(0, 1)):
            if hasattr(x, 'mask'):
                x = x.compressed()
            if hasattr(y, 'mask'):
                y = y.compressed()
            polys.append(zip(x, y))

        from matplotlib.collections import PolyCollection
        self.collection = PolyCollection(polys)
        self.collection.set_linewidth(0.5)
        try:
            self.axes.add_patch(self.collection)
        except:
            # PolyCollection not child of PatchCollection in matplotlib 0.98
            self.axes.add_collection(self.collection)

        xmin = self._getLimit('xmin', default=xCoords.min())
        xmax = self._getLimit('xmax', default=xCoords.max())
        ymin = self._getLimit('ymin', default=yCoords.min())
        ymax = self._getLimit('ymax', default=yCoords.max())

        self.axes.set_xlim(xmin=xmin, xmax=xmax)
        self.axes.set_ylim(ymin=ymin, ymax=ymax)

        self._plot()

    def _getSuitableVars(self, vars):
        from fipy.meshes.mesh2D import Mesh2D
        from fipy.variables.cellVariable import CellVariable
        vars = [var for var in AbstractMatplotlib2DViewer._getSuitableVars(self, vars) \
          if ((var.mesh.dim == 2 and isinstance(var, CellVariable))
              and var.rank == 0)]
        if len(vars) == 0:
            from fipy.viewers import MeshDimensionError
            raise MeshDimensionError, "Matplotlib2DViewer can only display a rank-0, 2D CellVariable"
        # this viewer can only display one variable
        return [vars[0]]

    def _plot(self):
        ##         pylab.clf()

        ##         ## Added garbage collection since matplotlib objects seem to hang
        ##         ## around and accumulate.
        ##         import gc
        ##         gc.collect()

        Z = self.vars[0].value

        self.norm.vmin = self._getLimit(('datamin', 'zmin'))
        self.norm.vmax = self._getLimit(('datamax', 'zmax'))

        rgba = self.cmap(self.norm(Z))

        self.collection.set_facecolors(rgba)
        self.collection.set_edgecolors(rgba)

        if self.colorbar is not None:
            self.colorbar.plot()  #vmin=zmin, vmax=zmax)
示例#50
0
def swhlocal(swhs,
             verts,
             ncels,
             colrs,
             config,
             mdlname='SMC',
             datx='2018',
             psfile='output.ps',
             paprorn='portrait',
             paprtyp='a3'):
    """
    ##  Draw local swh plot with given polycollections and cell
    ##  array. Output as A3 ps file.        JGLi28Feb2019
    """

    #  Degree to radian conversion parameter.
    d2rad = np.pi / 180.0

    #  Local plot configuration parameters
    rdpols = config[0]
    sztpxy = config[1]
    rngsxy = config[2]
    clrbxy = config[3]

    #  Maximum mapping radius.
    radius = rdpols[0]

    #  Set up wave height scale and marks with colrs.N.
    #  colrs.N returns colrs' total number of colors 256.
    waveht, factor, residu, marks, ncstr, nclrm = scale_swh(nclrm=colrs.N)

    resmn1 = residu - 1.0
    nswh0 = ncstr + int(factor * np.log(-resmn1 + residu))

    #print ' nswh0 and marks = ', nswh0, marks
    #print ' factor, residu, resmn1 = %f, %f, %f' % (factor, residu, resmn1)

    #  Some constant variables for plots.
    xprop = {'xlim': rngsxy[0:2], 'xlabel': ''}
    yprop = {'ylim': rngsxy[2:4], 'ylabel': ''}

    #  Use ijk to count how many times to draw.
    ijk = 0

    if True:
        #  Work out max and min values, excluding missing data (-999.0)
        cmax = swhs.max()
        cmin = swhs[swhs > -999.0].min()
        print(' swh range %f, %f' % (cmin, cmax))
        cmxs = 'SWHmx = %6.2f m' % cmax
        cmns = 'SWHmn = %10.3E' % cmin

        #  Reset missing values (-999.0) to be -resmn1
        swhs[swhs < -resmn1] = -resmn1

        #  Trim large values into plot range if any
        swhs[swhs > 32.0] = 32.0

        #  Convert swhs with logarithm scale.
        icnf = ncstr + np.rint(factor * np.log(swhs + residu))
        nswh = np.array(icnf, dtype=np.int16)

        print(" Drawing " + psfile)

        #  Set up first subplot and axis for northern hemisphere
        fig = plt.figure(figsize=sztpxy[0:2])
        ax = fig.add_subplot(1, 1, 1)
        ax.set(**xprop)
        ax.set(**yprop)
        ax.set_aspect('equal')
        ax.set_autoscale_on(False)
        ax.set_axis_off()
        plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0)

        # Prepare PolyCollection for this plot.
        polynorth = PolyCollection(verts)

        # Create color array for this plot
        pcface = []
        pcedge = []
        for i in ncels:
            if (nswh[i] != nswh0):
                pcface.append(colrs(nswh[i]))
                pcedge.append(colrs(nswh[i]))
            else:
                pcface.append(colrs(255))
                pcedge.append(colrs(0))

        #smcpoly.set_color(pcolr)        # This line defines both edge and face color.
        polynorth.set_facecolor(pcface)
        polynorth.set_edgecolor(pcedge)
        polynorth.set_linewidth(0.2)
        #print (" Drawing north hemisphere cells ... ")
        ax.add_collection(polynorth)

        #  Draw colorbar inside plot.
        xkeys, ykeys, clrply = colrboxy(clrbxy, colrs, marks)
        ax.add_collection(clrply)
        dkx = clrbxy[2]
        dky = clrbxy[3]
        for i in range(len(waveht)):
            m = marks[i]
            if (dkx < dky):
                plt.text(xkeys[0] + 1.15 * dkx,
                         ykeys[m],
                         str(waveht[i]),
                         verticalalignment='center',
                         fontsize=11,
                         color='b')
            else:
                plt.text(xkeys[m],
                         ykeys[0] + 1.15 * dky,
                         str(waveht[i]),
                         horizontalalignment='center',
                         fontsize=11,
                         color='b')

        if (dkx < dky):
            plt.text(xkeys[0] + 2.0 * dkx,
                     ykeys[marks[3]],
                     'SWH m',
                     rotation=90,
                     verticalalignment='center',
                     fontsize=15,
                     color='k')
        else:
            plt.text(xkeys[marks[3]],
                     ykeys[0] + 2.0 * dky,
                     'SWH m',
                     rotation=0,
                     horizontalalignment='center',
                     fontsize=15,
                     color='k')

        #  Put cell information inside plot
        tpx = sztpxy[2]
        tpy = sztpxy[3]
        plt.text(tpx,
                 tpy - 1.0,
                 mdlname,
                 horizontalalignment='center',
                 fontsize=17,
                 color='g')
        plt.text(tpx,
                 tpy - 1.6,
                 datx,
                 horizontalalignment='center',
                 fontsize=15,
                 color='k')
        plt.text(tpx,
                 tpy - 2.1,
                 cmxs,
                 horizontalalignment='center',
                 fontsize=13,
                 color='r')
        plt.text(tpx,
                 tpy - 2.6,
                 cmns,
                 horizontalalignment='center',
                 fontsize=13,
                 color='b')

        #  Refresh subplots and save them.
        plt.savefig(psfile,
                    dpi=None,
                    facecolor='w',
                    edgecolor='w',
                    orientation=paprorn,
                    papertype=paprtyp)

        plt.close()
示例#51
0
    #    print 'in update'
    depth = slider1.val
    mDot[0].set_data([.5, -.2])
    mDot[0].set_3d_properties(depth, zdir='y')
    #    plt.show()
    plt.pause(.001)


slider1.on_changed(update1)

# Back plane
verts3D = np.array([[-1, -1, 1], [1, -1, 1], [1, 1, 1], [-1, 1, 1],
                    [-1, -1, 1]])
vertsXY = [verts3D[:, :2]]
vertsZ = verts3D[:, 2]
poly1 = PolyCollection(vertsXY)
poly1.set_alpha(0.7)
poly1.set_color('w')
poly1.set_edgecolor('k')
ax.add_collection3d(poly1, zs=vertsZ, zdir='y')

# Front plane
verts3D = np.array([[-1, -1, -1], [1, -1, -1], [1, 1, -1], [-1, 1, -1],
                    [-1, -1, -1]])
vertsXY = [verts3D[:, :2]]
vertsZ = verts3D[:, 2]
poly2 = PolyCollection(vertsXY)
poly2.set_alpha(0.7)
poly2.set_color('w')
poly2.set_edgecolor('k')
ax.add_collection3d(poly2, zs=vertsZ, zdir='y')
示例#52
0
 def set_edgecolor(self, colors):
     PolyCollection.set_edgecolor(self, colors)
     self._edgecolor3d = PolyCollection.get_edgecolor(self)
示例#53
0
    def gen_land_bitmap(bmap, resolution_meters):

        #Get land polygons and bbox of polygons
        polys = []
        xmin = np.finfo(np.float64).max
        xmax = -np.finfo(np.float64).max
        ymin = xmin
        ymax = xmax

        logging.debug('Rasterizing Basemap, number of land polys: ' +
                      str(len(bmap.landpolygons)))
        # If no polys: return a zero map
        if (len(bmap.landpolygons) == 0):
            raise Exception('Basemap contains no land polys to rasterize')

        for polygon in bmap.landpolygons:
            coords = polygon.get_coords()
            xmin = min(xmin, np.min(coords[:, 0]))
            xmax = max(xmax, np.max(coords[:, 0]))
            ymin = min(ymin, np.min(coords[:, 1]))
            ymax = max(ymax, np.max(coords[:, 1]))
            polys.append(coords)

        xmin = np.floor(xmin / resolution_meters) * resolution_meters
        xmax = np.ceil(xmax / resolution_meters) * resolution_meters
        ymin = np.floor(ymin / resolution_meters) * resolution_meters
        ymax = np.ceil(ymax / resolution_meters) * resolution_meters

        # For debugging
        logging.debug('Rasterizing Basemap, bounding box: ' +
                      str([xmin, xmax, ymin, ymax]))

        # Switch backend to prevent creating an empty figure in notebook
        orig_backend = plt.get_backend()
        plt.switch_backend('agg')

        # Create figure to help rasterize
        fig = plt.figure(frameon=False)
        ax = plt.Axes(fig, [0., 0., 1., 1.])
        ax.set_axis_off()
        fig.add_axes(ax)
        ax.set_xlim(xmin, xmax)
        ax.set_ylim(ymin, ymax)

        # Set aspect and resolution
        # Aspect gives 1 in high plot
        aspect = (xmax - xmin) / (ymax - ymin)
        resolution_dpi = (ymax - ymin) / resolution_meters

        fig.set_dpi(resolution_dpi)
        fig.set_size_inches(aspect, 1)

        # Add polygons
        lc = PolyCollection(polys, facecolor='k', lw=0)
        ax.add_collection(lc)

        # Create canvas and rasterize
        canvas = FigureCanvasAgg(fig)
        try:
            canvas.draw()
            width, height = canvas.get_width_height()
            rgb_data = np.fromstring(canvas.tostring_rgb(),
                                     dtype='uint8').reshape(height, width, 3)
            data = rgb_data[:, :, 1]
            plt.close(
                fig
            )  #comment this for debugging purposes and replace with plt.show()
            logging.debug('Rasterized size: ' + str([width, height]))
        except MemoryError:
            gc.collect()
            raise Exception('Basemap rasterized size too large: ' +
                            str(aspect * resolution_dpi) + '*' +
                            str(resolution_dpi) + ' cells')
        finally:
            # Reset backend
            plt.switch_backend(orig_backend)

        return RasterizedBasemap(xmin, xmax, ymin, ymax, resolution_meters,
                                 data)
示例#54
0
    def plot_driver_states(self, driver_id, trip_count=50, start_time=0, fig_size=(30, 2), legend_size=6,
                           xtick_size=10):
        driver_data = self.driver_actions.xs(driver_id, level=1).copy()
        driver_data.sort_values(by='assigned_time', inplace=True)

        trip_times = []
        for i in driver_data[['assigned_time', 'driver_action', 'pickup_time', 'travel_time']].values:
            if i[1] == 1:
                assign_time = i[0]
                pickup_time = assign_time + i[2]
                drop_time = pickup_time + i[3]
                points = [assign_time, pickup_time, drop_time]
                trip_times.append(points)

        states = {'idle': 1, 'pick_up': 1, 'in_trip': 1}
        color_mapping = {"idle": "C0", "pick_up": "C1", "in_trip": "C2"}
        state_mapping = {0: "pick_up", 1: 'in_trip'}

        vertices = []
        colors = []
        end_time = start_time
        for t in trip_times[:trip_count]:
            if t[2] < end_time:
                continue
            v = [
                (end_time, states['idle'] - 0.4),
                (end_time, states['idle'] + 0.4),
                (t[0], states['idle'] + 0.4),
                (t[0], states['idle'] - 0.4),
                (end_time, states['idle'] - 0.4),
            ]

            vertices.append(v)
            colors.append(color_mapping['idle'])

            for k in range(2):
                state = states[state_mapping[k]]
                v = [
                    (t[k], state - 0.4),
                    (t[k], state + 0.4),
                    (t[k + 1], state + 0.4),
                    (t[k + 1], state - 0.4),
                    (t[k], state - 0.4),
                ]

                vertices.append(v)
                colors.append(color_mapping[state_mapping[k]])

            end_time = t[2]

        bars = PolyCollection(vertices, facecolors=colors)

        fig, ax = plt.subplots(figsize=fig_size)
        ax.add_collection(bars)
        ax.get_yaxis().set_visible(False)
        ax.autoscale()

        ax.tick_params(axis='x', which='major', labelsize=xtick_size)
        ax.tick_params(axis='x', which='minor', labelsize=xtick_size)

        idle = mpatches.Patch(color='C0', label='Idle time')
        pick_up = mpatches.Patch(color='C1', label='Pick up time')
        in_trip = mpatches.Patch(color='C2', label='Trip time')

        plt.legend(handles=[idle, pick_up, in_trip], bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.,
                   prop={'size': legend_size})
        plt.show()
ax.set_xlabel('Month')
ax.set_xticks(np.arange(1, 13))
ax.set_ylabel('Year')
ax.set_yticks(np.arange(2016, 2020))
ax.set_zlabel('Precipitation')

# 绘制3D多边形
ax = fig.add_subplot(1, 2, 2, projection='3d')
precipitation = []
for year in years:
    value = np.random.rand(len(month)) * 300
    value[0], value[-1] = 0, 0
    precipitation.append(list(zip(month, value)))

poly = PolyCollection(precipitation, facecolors=['b', 'c', 'r', 'm'])
poly.set_alpha(0.7)

ax.add_collection3d(poly, zs=years, zdir='y')
ax.set_xlabel('Month')
ax.set_xlim3d(0, 12)
ax.set_ylabel('Year')
ax.set_ylim3d(2015, 2020)
ax.set_zlabel('Precipitation')
ax.set_zlim3d(0, 300)

plt.show()

# ### Axes3D
# API:https://matplotlib.org/api/_as_gen/mpl_toolkits.mplot3d.axes3d.Axes3D.html
# 本文涉及的绘制3D图形函数都位于此接口;
示例#56
0
 def set_facecolor(self, colors):
     PolyCollection.set_facecolor(self, colors)
     self._facecolors3d = PolyCollection.get_facecolor(self)
示例#57
0
 def set_verts(self, verts, closed=True):
     """Set 3D vertices."""
     self.get_vector(verts)
     # 2D verts will be updated at draw time
     PolyCollection.set_verts(self, [], False)
     self._closed = closed
示例#58
0
def smcglobl(cel,
             nvrts,
             ncels,
             svrts,
             scels,
             colrs,
             config,
             Arctic=None,
             mdlname='SMC',
             buoys=None,
             psfile='output.ps',
             paprtyp='a3'):
    """
    ##  The smcglobl function plots a global view of a given smc grid.
    ##  cel is the full cell array in shape(nc, 5).
    ##                                JGLi04Mar2019
    """

    ##  Degree to radian conversion parameter.
    d2rad = np.pi / 180.0

    ##  Global plot configuration parameters.
    rdpols = config[0]
    sztpxy = config[1]
    rngsxy = config[2]
    clrbxy = config[3]
    if (Arctic is not None): ncabgm = config[4]

    ##  Maximum mapping radius.
    radius = rdpols[0]
    pangle = rdpols[1]
    plon = rdpols[2]
    plat = rdpols[3]

    ##  Outline circle at equator
    ciran = np.arange(1081) * d2rad / 3.0
    xcirc = radius * np.cos(ciran)
    ycirc = radius * np.sin(ciran)

    ##  Define depth to color index conversion parameters and marks.
    ##  Use only first 131 colors in colrs(0:255).
    depth, factr, cstar, marks, ncstr, nclrm = scale_depth(nclrm=131)

    ##  Cell color is decided by its depth value, dry cells use default 0 color.
    nc = cel.shape[0]
    ndeps = np.zeros((nc), dtype=np.int)
    for j in range(nc):
        if (cel[j, 4] > 0):
            ndeps[j] = ncstr + np.rint(
                (cstar - np.log10(cel[j, 4])) * factr).astype(np.int)
    #ndeps = ncstr + np.rint( (cstar-np.log10(cel[:,4]))*factr ).astype(np.int)

    if (Arctic is not None):
        na = int(ncabgm[1])
        nb = int(ncabgm[2])
        jm = int(ncabgm[3])

    ##  Set up first subplot and axis for northern hemisphere
    print(" Drawing north hemisphere cells ... ")
    fig = plt.figure(figsize=sztpxy[0:2])
    ax1 = fig.add_subplot(1, 2, 1)
    ax1.set_aspect('equal')
    ax1.set_autoscale_on(False)
    ax1.set_axis_off()
    plt.subplots_adjust(left=0.02, bottom=0.02, right=0.98, top=0.95)
    plt.subplots_adjust(wspace=0.02, hspace=0.01)

    xprop = {'xlim': rngsxy[0:2], 'xlabel': 'Nothing'}
    yprop = {'ylim': rngsxy[2:4], 'ylabel': 'Nothing'}
    ax1.set(**xprop)
    ax1.set(**yprop)

    ax1.plot(xcirc, ycirc, 'b-')

    ## Select cells for one subplot and create verts and pcolr.
    pcface = []
    pcedge = []
    for i in ncels:
        if (Arctic is not None) and (cel[i, 1] == Arctic):
            # Mark the arctic map-east reference region by first ring of its boundary cells
            pcface.append(colrs(246))
            pcedge.append(colrs(246))
        #elif( Arctic is not None ) and ( cel[i,1] == jm ):
        #    # Mark the arctic cells
        #    pcface.append(colrs(168))
        #    pcedge.append(colrs(168))
        else:
            pcface.append(colrs(255))
            pcedge.append(colrs(ndeps[i]))

    ##  Draw this hemisphere cells
    smcpoly = PolyCollection(nvrts)
    smcpoly.set_facecolor(pcface)
    smcpoly.set_edgecolor(pcedge)
    smcpoly.set_linewidth(0.2)
    ax1.add_collection(smcpoly)

    ##  Draw colorbar for ax1.
    xkeys, ykeys, clrply = colrboxy(clrbxy, colrs, marks, nclrm=nclrm)
    ax1.add_collection(clrply)
    for i in range(len(depth)):
        m = marks[i]
        plt.text(xkeys[m],
                 ykeys[0] + 1.15 * (ykeys[1] - ykeys[0]),
                 str(depth[i]),
                 horizontalalignment='center',
                 fontsize=11,
                 color='b')
        #rotation=-90,verticalalignment='center', fontsize=11, color='b' )

    plt.text(xkeys[marks[0]],
             ykeys[0] + 2.2 * (ykeys[1] - ykeys[0]),
             'Depth m',
             horizontalalignment='left',
             fontsize=15,
             color='k')
    #rotation=-90,verticalalignment='center', fontsize=15, color='k' )

    # Overlay buoy sites on grid map if buoy file is provided.
    if (buoys is not None):
        hdr, buoyll = readtext(buoys)
        nmbu = long(hdr[0])
        buoyids = buoyll[:, 0].astype(str)
        buoylat = buoyll[:, 1].astype(np.float)
        buoylon = buoyll[:, 2].astype(np.float)

        #; Convert slat slon to elat elon with given new pole
        elat, elon, sxc, syc = steromap(buoylat,
                                        buoylon,
                                        plat,
                                        plon,
                                        Pangl=pangle)

        #; Mark buoy position on map
        print(' Selected buoys on north hemisphere ...')
        for i in range(nmbu):
            if ((elat[i] >= 0.0) and (rngsxy[0] < sxc[i] < rngsxy[1])
                    and (rngsxy[2] < syc[i] < rngsxy[3])):
                print(' {:6} {:8.3f} {:8.3f}'.format(buoyids[i], buoylat[i],
                                                     buoylon[i]))
                txtsz = int(abs(np.sin(elat[i] * d2rad) * 12.0))
                plt.text(sxc[i],
                         syc[i],
                         'r',
                         fontsize=txtsz,
                         horizontalalignment='center',
                         color='r')
                plt.text(sxc[i],
                         syc[i],
                         '.',
                         fontsize=txtsz * 2,
                         horizontalalignment='center',
                         color='r')

    ##  Southern hemisphere
    print(" Drawing south hemisphere cells ... ")
    ax2 = fig.add_subplot(1, 2, 2)
    ax2.set_aspect('equal')
    ax2.axis('off')
    plt.subplots_adjust(left=0.02, bottom=0.02, right=0.98, top=0.95)
    plt.subplots_adjust(wspace=0.02, hspace=0.01)
    ax2.set(**xprop)
    ax2.set(**yprop)

    ax2.plot(xcirc, ycirc, 'b-')

    ## Select cells for one subplot and create verts and pcolr.
    pcface = []
    pcedge = []
    for i in scels:
        pcface.append(colrs(255))
        pcedge.append(colrs(ndeps[i]))

    ## Generate polygon collections for southern hemisphere
    smcpoly = PolyCollection(svrts)
    smcpoly.set_facecolor(pcface)
    smcpoly.set_edgecolor(pcedge)
    smcpoly.set_linewidth(0.2)

    ax2.add_collection(smcpoly)

    ##  Put cell information inside plot
    tpx = sztpxy[2]
    tpy = sztpxy[3]
    dpy = 0.6

    plt.text(tpx,
             tpy + dpy * 0.5,
             mdlname + ' Grid',
             horizontalalignment='center',
             fontsize=15,
             color='k')
    plt.text(tpx,
             tpy + dpy * 2.0,
             'NC=' + str(nc),
             horizontalalignment='center',
             fontsize=13,
             color='r')
    if (Arctic is not None):
        plt.text(tpx,
                 tpy + dpy * 3.0,
                 'NA=' + str(na),
                 horizontalalignment='center',
                 fontsize=13,
                 color='r')
        plt.text(tpx,
                 tpy + dpy * 4.0,
                 'NB=' + str(nb),
                 horizontalalignment='center',
                 fontsize=13,
                 color='r')

    ##  Draw colorbar for ax2.
    xkeys, ykeys, clrply = colrboxy(clrbxy, colrs, marks, nclrm=nclrm)
    ax2.add_collection(clrply)
    for i in range(len(depth)):
        m = marks[i]
        plt.text(xkeys[m],
                 ykeys[0] + 1.18 * (ykeys[1] - ykeys[0]),
                 str(depth[i]),
                 horizontalalignment='center',
                 fontsize=11,
                 color='b')
        #verticalalignment='center', fontsize=11, color='b' )
        #rotation=-90,verticalalignment='center', fontsize=11, color='b' )

    plt.text(xkeys[marks[-1]],
             ykeys[0] + 2.2 * (ykeys[1] - ykeys[0]),
             'Depth m',
             horizontalalignment='right',
             fontsize=15,
             color='k')
    #rotation=-90,verticalalignment='center', fontsize=15, color='k' )

    # Overlay buoy sites on grid map if buoy file is provided.
    if (buoys is not None):

        #; Mark buoy position on map
        print(' Selected buoys on south hemisphere ...')
        for i in range(nmbu):
            if ((elat[i] < 0.0) and (rngsxy[0] < -sxc[i] < rngsxy[1])
                    and (rngsxy[2] < syc[i] < rngsxy[3])):
                print(' {:6} {:8.3f} {:8.3f}'.format(buoyids[i], buoylat[i],
                                                     buoylon[i]))
                txtsz = int(abs(np.sin(elat[i] * d2rad) * 12.0))
                plt.text(-sxc[i],
                         syc[i],
                         'r',
                         fontsize=txtsz,
                         horizontalalignment='center',
                         color='r')
                plt.text(-sxc[i],
                         syc[i],
                         '.',
                         fontsize=txtsz * 2,
                         horizontalalignment='center',
                         color='r')

    ##  Refresh subplots and save them.
    plt.subplots_adjust(wspace=0.02, hspace=0.01)

    plt.savefig(psfile, dpi=None,facecolor='w',edgecolor='w', \
                orientation='landscape',papertype=paprtyp,format='ps')
示例#59
0
def candlestick2_ohlc(ax, opens, highs, lows, closes, width=4,
                 colorup='k', colordown='r',
                 alpha=0.75,
                 ):
    """Represent the open, close as a bar line and high low range as a
    vertical line.

    NOTE: this code assumes if any value open, low, high, close is
    missing they all are missing


    Parameters
    ----------
    ax : `Axes`
        an Axes instance to plot to
    opens : sequence
        sequence of opening values
    highs : sequence
        sequence of high values
    lows : sequence
        sequence of low values
    closes : sequence
        sequence of closing values
    ticksize : int
        size of open and close ticks in points
    colorup : color
        the color of the lines where close >= open
    colordown : color
        the color of the lines where close <  open
    alpha : float
        bar transparency

    Returns
    -------
    ret : tuple
        (lineCollection, barCollection)
    """

    _check_input(opens, highs, lows, closes)

    delta = width / 2.
    barVerts = [((i - delta, open),
                 (i - delta, close),
                 (i + delta, close),
                 (i + delta, open))
                for i, open, close in zip(xrange(len(opens)), opens, closes)
                if open != -1 and close != -1]

    rangeSegments = [((i, low), (i, high))
                     for i, low, high in zip(xrange(len(lows)), lows, highs)
                     if low != -1]

    r, g, b = colorConverter.to_rgb(colorup)
    colorup = r, g, b, alpha
    r, g, b = colorConverter.to_rgb(colordown)
    colordown = r, g, b, alpha
    colord = {True: colorup,
              False: colordown,
              }
    colors = [colord[open < close]
              for open, close in zip(opens, closes)
              if open != -1 and close != -1]

    useAA = 0,  # use tuple here
    lw = 0.5,   # and here
    rangeCollection = LineCollection(rangeSegments,
                                     colors=((0, 0, 0, 1), ),
                                     linewidths=lw,
                                     antialiaseds=useAA,
                                     )

    barCollection = PolyCollection(barVerts,
                                   facecolors=colors,
                                   edgecolors=((0, 0, 0, 1), ),
                                   antialiaseds=useAA,
                                   linewidths=lw,
                                   )

    minx, maxx = 0, len(rangeSegments)
    miny = min([low for low in lows if low != -1])
    maxy = max([high for high in highs if high != -1])

    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()

    # add these last
    ax.add_collection(rangeCollection)
    ax.add_collection(barCollection)
    return rangeCollection, barCollection
示例#60
0
def smclocal(cel,
             verts,
             ncels,
             colrs,
             config,
             Arctic=None,
             mdlname='SMC',
             buoys=None,
             psfile='output.ps',
             paprorn='portrait',
             paprtyp='a3'):
    """
    ##  The smclocal function plots a local region of a given smc grid.
    ##  cel is the full cell array in shape(nc, 5).
    ##                                JGLi04Mar2019
    """

    #  Degree to radian conversion parameter.
    d2rad = np.pi / 180.0

    #  Local plot configuration parameters
    rdpols = config[0]
    sztpxy = config[1]
    rngsxy = config[2]
    clrbxy = config[3]
    if (Arctic): ncabgm = config[4]

    # Maximum mapping radius.
    radius = rdpols[0]
    pangle = rdpols[1]
    plon = rdpols[2]
    plat = rdpols[3]

    # Define depth to color index conversion parameters and marks.
    # Use only first 131 colors in colrs(0:255).
    depth, factr, cstar, marks, ncstr, nclrm = scale_depth(nclrm=136)

    # Cell color is decided by its depth value.
    nc = cel.shape[0]
    ndeps = np.zeros((nc), dtype=np.int)
    for j in range(nc):
        if (cel[j, 4] > -11):
            ndeps[j] = ncstr + np.rint(
                (cstar - np.log10(cel[j, 4] + 11)) * factr).astype(np.int)
    #ndeps = ncstr + np.rint( (cstar-np.log10(cel[:,4]))*factr ).astype(np.int)

    if (Arctic is not None):
        na = int(ncabgm[1])
        nb = int(ncabgm[2])
        jm = int(ncabgm[3])

    # Workout output file format from its extension
    #for i in np.arange(len(psfile))[::-1]:
    #    if( psfile[i] == '.' ):
    #        psfmt = psfile[i+1:]
    #        break
    #print " Output file format will be "+psfmt
    # Python plt.savefig will do this automatically.

    # Use selected cells to draw the plot.
    fig = plt.figure(figsize=sztpxy[0:2])
    ax = fig.add_subplot(1, 1, 1)
    yprop = {'ylim': rngsxy[2:4], 'ylabel': ''}
    xprop = {'xlim': rngsxy[0:2], 'xlabel': ''}
    ax.set(**xprop)
    ax.set(**yprop)
    ax.set_aspect('equal')
    ax.set_autoscale_on(False)
    ax.set_axis_off()
    plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0)

    # Create color array for this plot
    pcface = []
    pcedge = []
    for i in ncels:
        if (Arctic is not None) and (cel[i, 1] == Arctic):
            # Mark the arctic map-east reference region by first ring of its boundary cells
            pcface.append(colrs(246))
            pcedge.append(colrs(246))
        #elif( Arctic is not None ) and ( cel[i,1] == jm ):
        #    # Mark the arctic cells
        #    pcface.append(colrs(168))
        #    pcedge.append(colrs(168))
        else:
            pcedge.append(colrs(ndeps[i] + 10))
            pcface.append(colrs(ndeps[i]))
            #pcface.append(colrs(255))
            #pcedge.append(colrs(ndeps[i]))

    # Create PolyCollection from selected verts and define edge and face color.
    polynorth = PolyCollection(verts)
    polynorth.set_facecolor(pcface)
    polynorth.set_edgecolor(pcedge)
    polynorth.set_linewidth(0.2)

    # Draw the selected cells as colored polygons.
    ax.add_collection(polynorth)

    # Draw colorbar inside plot.
    xkeys, ykeys, clrply = colrboxy(clrbxy, colrs, marks, nclrm=nclrm)
    ax.add_collection(clrply)
    dkx = clrbxy[2]
    dky = clrbxy[3]
    for i in range(len(depth)):
        m = marks[i]
        if (dkx < dky):
            plt.text(xkeys[0] + 1.15 * dkx,
                     ykeys[m],
                     str(depth[i]),
                     verticalalignment='center',
                     fontsize=11,
                     color='b')
        else:
            plt.text(xkeys[m],
                     ykeys[0] + 1.15 * dky,
                     str(depth[i]),
                     horizontalalignment='center',
                     fontsize=11,
                     color='b')

    if (dkx < dky):
        plt.text(xkeys[0] + 1.9 * dkx,
                 ykeys[marks[2]],
                 'Depth m',
                 rotation=-90,
                 verticalalignment='center',
                 fontsize=15,
                 color='k')
    else:
        plt.text(xkeys[marks[2]],
                 ykeys[0] + 1.9 * dky,
                 'Depth m',
                 rotation=0,
                 horizontalalignment='center',
                 fontsize=15,
                 color='k')

    # Put cell information inside plot
    tpx = sztpxy[2]
    tpy = sztpxy[3]
    dpy = -0.6

    plt.text(tpx,
             tpy + dpy * 1,
             mdlname + ' Grid',
             horizontalalignment='center',
             fontsize=15,
             color='k')
    plt.text(tpx,
             tpy + dpy * 2,
             'NC=' + str(nc),
             horizontalalignment='center',
             fontsize=13,
             color='r')
    if (Arctic is not None):
        plt.text(tpx,
                 tpy + dpy * 3,
                 'NA=' + str(na),
                 horizontalalignment='center',
                 fontsize=13,
                 color='r')
        plt.text(tpx,
                 tpy + dpy * 4,
                 'NB=' + str(nb),
                 horizontalalignment='center',
                 fontsize=13,
                 color='r')

    # Overlay buoy sits on grid map if buoy file is provided.
    if (buoys is not None):
        hdr, buoyll = readtext(buoys)
        nmbu = int(hdr[0])
        buoyids = buoyll[:, 0].astype(str)
        buoylat = buoyll[:, 1].astype(np.float)
        buoylon = buoyll[:, 2].astype(np.float)

        # Convert slat slon to elat elon with given new pole
        elat, elon, sxc, syc = steromap(buoylat,
                                        buoylon,
                                        plat,
                                        plon,
                                        Pangl=pangle)

        # Mark buoy position on map
        print(' Selected buoys in this plot:')
        for i in range(nmbu):
            if ((elat[i] >= 25.0) and (rngsxy[0] < sxc[i] < rngsxy[1])
                    and (rngsxy[2] < syc[i] < rngsxy[3])):
                print(' {:6} {:8.3f} {:8.3f}'.format(buoyids[i], buoylat[i],
                                                     buoylon[i]))
                txtsz = int(abs(np.sin(elat[i] * d2rad) * 12.0))
                plt.text(sxc[i],
                         syc[i],
                         'r',
                         fontsize=txtsz,
                         horizontalalignment='center',
                         color='r')
                plt.text(sxc[i],
                         syc[i],
                         '.',
                         fontsize=txtsz * 2,
                         horizontalalignment='center',
                         color='r')

    # Save plot as ps file
    print(" Save the smc grid local plot ... ")
    plt.savefig(psfile, dpi=None,facecolor='w',edgecolor='w', \
                orientation=paprorn,papertype=paprtyp,format='ps')