示例#1
0
  def nbo_vs_year(self):
    """
    Plot percent of structures, with different NBO per 1000 atoms levels,
    from "good" pdb structures (all PDB files with a single model, no unknown
    atom types and good CRYST1 records) VS. year

    Second sub plot: the total of "good" structures deposited VS. year
    """
    plt.close('all')
    # figure parameters
    # plt.ion() # enables interactive mode
    max_y = 105
    fontsize = 20
    fig = plt.figure(figsize=(8,10))
    gs = GridSpec(2,1,height_ratios=[2,1])
    # first subplot
    ax1 = plt.subplot(gs[0,0])
    ax2 = plt.subplot(gs[1,0])
    lines = []
    line_type = ['.:','.-','.--']
    n = len(line_type)
    for i,pd in enumerate(self.plot_data_list):
      lt = line_type[i%n]
      l, = ax1.plot(pd.years,pd.percent,lt)
      lines.append(l)
    ax1.set_ylabel('Percent of PDB structures',fontsize=fontsize)
    ax1.text(min(self.years)+0.5,max_y-4,'a.',fontsize=fontsize)
    ax1.tick_params(axis='both',labelsize=fontsize - 2)
    ax1.axes.get_xaxis().set_visible(False)
    ax1.set_yticks([5,10,40,70,100])
    ax1.set_ylim([0,max_y])
    ax1.set_xlim([self.start_year,self.end_year])
    # legend
    labels = ['NBO per 1000 atom > {}']*len(self.nbo_per_1000_atoms)
    labels = [x.format(y) for x,y in zip(labels,self.nbo_per_1000_atoms)]
    if self.sym:
      legend_pos = [0.96,0.70]
    else:
      legend_pos = [0.54,0.30]
    ax1.legend(
      lines,labels,
      bbox_to_anchor=legend_pos,
      loc=1,borderaxespad=0.0)
    # Second subplot
    ax2.plot(self.years,self.n_total,'.:g')
    ax2.set_xlim([self.start_year,self.end_year])
    ax2.set_xlabel('Year',fontsize=fontsize)
    ax2.set_ylabel('Number of structures',fontsize=fontsize)
    ax2.text(min(self.years)+0.5,max(self.n_total)-5,'b.',fontsize=fontsize)
    ax2.tick_params(axis='both',labelsize=fontsize - 2)
    ax2.set_xticks([self.start_year,1990,2000,self.end_year])
    ax2.set_yscale('log')
    ax2.set_yticks([10,100,1000])
    #
    gs.tight_layout(fig)
    gs.update(hspace=0)
    s = 'all'*(not self.sym) + 'sym'*self.sym
    fig_name = 'nbo_vs_year_{}.png'.format(s)
    plt.savefig(fig_name)
    fig.show()
示例#2
0
    def __render_both(self):
        ''' renders two plots, one with the filtered and one without. '''
        times = {'start': time.time()}
        if self.__left_axes is None:
            self.__width_ratio = self.__make_width_ratio()
            gs = GridSpec(1,
                          2,
                          width_ratios=self.__make_width_ratio(adjusted=True),
                          wspace=0.00)
            gs.tight_layout(self.__chart.canvas.figure)
            self.__left_axes = self.__chart.canvas.figure.add_subplot(
                gs.new_subplotspec((0, 0)))
            self.__add_grid(self.__left_axes)
            self.__right_axes = self.__chart.canvas.figure.add_subplot(
                gs.new_subplotspec((0, 1)))
            self.__add_grid(self.__right_axes)
            times['l_axes_init'] = time.time()

        self.__left_scatter = self.__render_scatter(
            self.__left_cache, self.__left_axes, self.__left_scatter,
            self.__ui.maxFilteredFreq.value(), self.left, 'l', times)
        self.__set_limits(self.__left_axes, self.__ui.minFreq,
                          self.__ui.maxFilteredFreq, self.__ui.minTime,
                          self.__ui.maxTime)
        times['l_limits'] = time.time()
        self.__right_scatter = self.__render_scatter(
            self.__right_cache, self.__right_axes, self.__right_scatter,
            self.__ui.maxUnfilteredFreq.value(), self.right, 'r', times)
        self.__right_axes.set_yticklabels([])
        self.__right_axes.get_yaxis().set_tick_params(length=0)
        self.__set_limits(self.__right_axes, self.__ui.minFreq,
                          self.__ui.maxUnfilteredFreq, self.__ui.minTime,
                          self.__ui.maxTime)
        times['r_limits'] = time.time()
        return times
示例#3
0
def vis(name, obj):

    data = obj[:]

    name = "result_" + name

    raw_image = data.sum(-1)
    raw_image.T[:] -= raw_image.min(tuple(range(1, raw_image.ndim)))
    raw_image.T[:] /= raw_image.max(tuple(range(1, raw_image.ndim)))

    pad_width = ((0, 1), ) + ((0, 0), ) * (raw_image.ndim - 1)
    raw_image = pad(raw_image,
                    pad_width=pad_width,
                    mode='constant',
                    constant_values=0)
    raw_image = raw_image.transpose(roll(range(raw_image.ndim), -1))

    scale = obj.attrs['scale'][:] * unit_conversion
    X = (scale * data.shape[1:])[1::-1]

    extent = [0, X[0], 0, X[1]]

    for measure, data1 in zip(("Nucleus", "Actin"), data):

        psmooth0 = psmooth / scale

        smoothed_data = gaussian_filter(data1, psmooth0).sum(2)
        smoothed_data -= smoothed_data.min()
        smoothed_data /= smoothed_data.max()

        dp = (scale * psmooth0)[:2].mean()

        clf()
        fig = figure(figsize(22, 10))

        gs = GridSpec(1, 2)
        ax = []
        for gs0 in gs:
            ax0 = fig.add_subplot(gs0)
            ax0.set_adjustable("box-forced")
            ax0.set_xlabel("mm", fontsize="x-large")
            ax0.set_ylabel("mm", fontsize="x-large")
            ax.append(ax0)

        divider = make_axes_locatable(ax[0])
        cax = divider.append_axes("right", size="5%", pad=0.05)
        im = ax[0].imshow(smoothed_data,
                          extent=extent,
                          interpolation="bicubic",
                          origin="lower")
        cb = colorbar(im, cax=cax)
        cb.set_label(label="{} Density".format(measure), fontsize="x-large")

        ax[1].imshow(raw_image,
                     extent=extent,
                     interpolation="bilinear",
                     origin="lower")

        gs.tight_layout(fig)
        savefig(join(outdir, name + "_{}.png".format(measure)))
def plot_flux_decomposition(ss, tm, name=None, source_code=None):
    f = plt.figure(figsize=(18, 6))
    gs = GridSpec(2, 3, wspace=0.5, hspace=0.5)
    ax1 = plt.subplot(gs[0, 0])
    ax2 = plt.subplot(gs[0, 1])
    ax3 = plt.subplot(gs[0, 2])
    ax4 = plt.subplot(gs[1, 0])
    ax5 = plt.subplot(gs[1, 1])
    ax6 = plt.subplot(gs[1, 2])

    first_surface = int(len(ss) / 2)

    ax1.scatter(range(first_surface), ss[0:first_surface], s=80, c="r")
    ax1.set_title("First part of steady state eigenvector")
    ax1.set_ylabel("Population")

    ax2.scatter(range(first_surface), [tm[i][i + first_surface] for i in range(first_surface)], s=80, c="r")
    ax2.set_title("Transition probabilities (unbound to bound)")
    ax2.set_ylabel("Probability")

    ax3.scatter(range(first_surface), [ss[i] * tm[i][i + first_surface] for i in range(first_surface)], s=80, c="r")
    ax3.set_title("Steady state eigenvector * transition probabilities (unbound to bound)")
    ax3.set_ylabel("Population * Probability")

    ax4.scatter(range(first_surface, 2 * first_surface), ss[first_surface : 2 * first_surface], s=80, c="b")
    ax4.set_title("Second part of steady state eigenvector")
    ax4.set_ylabel("Population")

    ax5.scatter(range(first_surface), [tm[i + first_surface][i] for i in range(first_surface)], s=80, c="b")
    ax5.set_title("Transition probabilities (bound to unbound)")
    ax5.set_ylabel("Probability")

    ax6.scatter(
        range(first_surface, 2 * first_surface),
        [ss[i] * tm[i + first_surface][i] for i in range(first_surface)],
        s=80,
        c="b",
    )
    ax6.set_title("Steady state eigenvector * transition probabilities (bound to unbound)")
    ax6.set_ylabel("Population * Probability")

    st = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    sts = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")

    if name:
        if source_code is not None:
            text = st + " " + name + " in " + source_code
        else:
            text = st + " " + name
        f.text(0.0, 0.0, text, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)
    else:
        f.text(0.0, 0.0, st, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)

    gs.tight_layout(f, rect=[0, 0, 1, 1])
    plt.savefig("Figures/flux-decomposition-{}-{}".format(sts, name), dpi=150)
    # plt.show()
    plt.close()
def plot_steady_state(unbound, bound, pdf_unbound, pdf_bound, ss, name=None, source_code=None):
    f = plt.figure(figsize=(12, 12))
    gs = GridSpec(2, 2, wspace=0.5, hspace=0.5)
    ax1 = plt.subplot(gs[0, 0])
    ax2 = plt.subplot(gs[0, 1])
    ax3 = plt.subplot(gs[1, 0])
    ax4 = plt.subplot(gs[1, 1])

    ax1.scatter(range(len(unbound)), unbound, s=80, c="r")
    ax1.plot(range(len(unbound)), unbound, lw=2, c="r")
    ax2.scatter(range(len(bound)), bound, s=80, c="b")
    ax2.plot(range(len(bound)), bound, lw=2, c="b")
    ax1.set_title("Unbound energy surface")
    ax2.set_title("Bound energy surface")

    bins = int(len(ss) / 2)

    ax3.plot(range(len(unbound)), ss[0:bins], lw=2, c="r")
    ax3.scatter(range(len(unbound)), ss[0:bins], s=80, c="r")
    ax3.plot(range(len(pdf_unbound)), pdf_unbound, lw=4, ls="--", c="k")
    ax3.set_title("Boltzmann and forward s.s.")

    ax4.plot(range(len(bound)), ss[bins : 2 * bins], lw=2, c="b")
    ax4.scatter(range(len(bound)), ss[bins : 2 * bins], s=80, c="b")
    ax4.plot(range(len(pdf_bound)), pdf_bound, lw=4, ls="--", c="k")
    ax4.set_title("Boltzmann and forward s.s.")

    ax4.set_xlabel("Reaction coordinate ($\phi$)")
    ax3.set_xlabel("Reaction coordinate ($\phi$)")
    ax1.set_ylabel("Energy (a.u.)")
    ax2.set_ylabel("Energy (a.u.)")
    ax3.set_ylabel("Population")
    ax4.set_ylabel("Population")

    ax1.set_ylim([-15, 20])
    ax2.set_ylim([-15, 20])
    ax3.set_ylim([0, 0.6])
    ax4.set_ylim([0, 0.6])

    st = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    sts = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")

    if name:
        if source_code is not None:
            text = st + " " + name + " in " + source_code
        else:
            text = st + " " + name
        f.text(0.0, 0.0, text, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)
    else:
        f.text(0.0, 0.0, st, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)

    gs.tight_layout(f, rect=[0, 0, 1, 1])
    # plt.show()
    plt.savefig("Figures/steady-state-{}-{}".format(sts, name), dpi=150)
    plt.close()
def plot_images(images, labels):
    gs = GridSpec(6, 7)
    gs.update(wspace=0.03, hspace=0.03) # set the spacing between axes. 
    fig = plt.figure(figsize=(12,12))
    image_titles = get_label_map('signnames.csv', labels)
    for i in range(len(images)-1):
        ax = fig.add_subplot(gs[i])
        img = images[i]
        ax.imshow(img)
        ax.set_aspect('equal')
        ax.set_title(image_titles[i],fontsize=7)
        plt.axis('off')
    gs.tight_layout(fig)
    plt.show()
def plot_flux(
    flux_unbound, unbound_scale, flux_bound, bound_scale, flux_between, between_scale, name=None, source_code=None
):
    f = plt.figure(figsize=(12, 12))
    gs = GridSpec(2, 2, wspace=0.5, hspace=0.5)
    ax1 = plt.subplot(gs[0, 0])
    ax2 = plt.subplot(gs[0, 1])
    ax3 = plt.subplot(gs[1, 0])

    # ax1.scatter(range(len(flux_unbound)), flux_unbound, s=80, c='r')
    ax1.plot(range(len(flux_unbound)), flux_unbound * 10 ** unbound_scale, lw=2, c="r")
    # ax2.scatter(range(len(flux_bound)), flux_bound, s=80, c='b')
    ax2.plot(range(len(flux_bound)), flux_bound * 10 ** bound_scale, lw=2, c="b")
    ax1.set_title("Unbound energy surface")
    ax2.set_title("Bound energy surface")

    # ax3.scatter(range(len(flux_between)), flux_between, s=80, c='k')
    ax3.autoscale(enable=False, axis="y")
    ax3.plot(range(len(flux_between)), flux_between * 10 ** between_scale, lw=4, ls="-", c="k")
    ax3.set_title("Flux between surfaces")
    ax3.set_xlabel("Reaction coordinate ($\phi$)")

    ax1.set_ylabel("Flux ($\\times 10^{{{}}}$)".format(unbound_scale), size=20)
    ax2.set_ylabel("Flux ($\\times 10^{{{}}}$)".format(bound_scale), size=20)
    ax3.set_ylabel("Flux ($\\times 10^{{{}}}$)".format(between_scale), size=20)

    st = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    sts = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")

    if name:
        if source_code is not None:
            text = st + " " + name + " in " + source_code
        else:
            text = st + " " + name
        f.text(0.0, 0.0, text, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)
    else:
        f.text(0.0, 0.0, st, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)

    gs.tight_layout(f, rect=[0, 0, 1, 1])
    plt.savefig("Figures/flux-{}-{}.png".format(sts, name), dpi=150)
    # plt.show()
    plt.close()
def fig2():
    grid = WaveSimulation(2**8, 2**8, length_x=1, length_y=1, zmin=0, zmax=2)
    grid.creat_gaussian_beam(0.05)
    A_lens, z = grid.lens_phase(focal_length=20, nargout=2)
    E_until_lens = grid.E0 * A_lens
    plt.imshow(np.abs(E_until_lens))
    plt.imshow(np.angle(E_until_lens))
    plt.show()
    intersity3d = make_intersity3d(grid, E_until_lens, z)
    print(np.argmax)
    fig2 = plt.figure(2)
    gs = GridSpec(4, 4)  # 4 rows, 4 columns
    gs.tight_layout(fig2, rect=[None, None, None, None])
    ax1 = fig2.add_subplot(gs[0:2, 0:2])  # First row, first column
    ax1.imshow(intersity3d[:, :, grid.nz // 2])
    ax1.set_title("XY")
    plt.axis('off')
    ax2 = fig2.add_subplot(gs[0:2, 2:4])  # First row, second column
    ax2.imshow((intersity3d[grid.n // 2 - 1, :, :].T)**3)
    ax2.set_title("XZ")
    plt.axis('off')
    ax3 = fig2.add_subplot(gs[2, 0])  # First row, third column
    plt.axis('off')
    ax4 = fig2.add_subplot(gs[2, 1])  # Second row, span all columns
    plt.axis('off')
    ax5 = fig2.add_subplot(gs[2, 2])  # First row, third column
    plt.axis('off')
    ax6 = fig2.add_subplot(gs[2, 3])  # Second row, span all columns
    plt.axis('off')
    ax7 = fig2.add_subplot(gs[3, 0])  # First row, third column
    plt.axis('off')
    ax8 = fig2.add_subplot(gs[3, 1])  # Second row, span all columns
    plt.axis('off')
    ax9 = fig2.add_subplot(gs[3, 2])  # First row, third column
    plt.axis('off')
    ax10 = fig2.add_subplot(gs[3, 3])  # Second row, span all columns
    plt.axis('off')
    plt.tight_layout()
    plt.show()
示例#9
0
def _decorate_plot(fig, ax, artist, plot_data, color_data, legend, cmap):
  ax.set_xlabel(plot_data.xlabel)
  ax.set_ylabel(plot_data.ylabel)

  if plot_data.xticks is not None:
    ax.set_xticks(np.arange(len(plot_data.xticks)))
    ax.set_xticklabels(plot_data.xticks)
  if plot_data.yticks is not None:
    ax.set_yticks(np.arange(len(plot_data.yticks)))
    ax.set_yticklabels(plot_data.yticks)

  if color_data.needs_cbar:
    cbar = fig.colorbar(artist)
    cbar.set_label(color_data.label)
    return

  if legend and color_data.names is not None and len(color_data.names) <= 20:
    # using trick from http://stackoverflow.com/a/19881647/10601
    num_colors = len(color_data.names)
    if cmap == '_auto':
      colors = islice(cycle(COLOR_CYCLE), num_colors)
    else:
      colors = artist.cmap(np.linspace(0, 1, num_colors))
    proxies = [Patch(color=c, label=k) for c,k in zip(colors, color_data.names)]

    # Make a new skinny subplot, then cover it with the legend.
    # This allows an out-of-axis legend without it getting cut off.
    # Uses the trick from http://stackoverflow.com/a/22885327/10601
    gs = GridSpec(1, 2, width_ratios=(3, 1), wspace=0.02)
    ax.set_position(gs[0].get_position(fig))
    ax.set_subplotspec(gs[0])
    lx = fig.add_subplot(gs[1])
    lx.legend(handles=proxies, title=color_data.label, loc='upper left',
              mode='expand', borderaxespad=0, fontsize='small', frameon=False)
    lx.axis('off')
    gs.tight_layout(fig, w_pad=0)
示例#10
0
def plot_completeness(
    physgrid_list,
    noise_model_list,
    output_plot_filename,
    param_list=["Av", "Rv", "logA", "f_A", "M_ini", "Z", "distance"],
    compl_filter="F475W",
):
    """
    Make visualization of the completeness
    Parameters
    ----------
    physgrid_list : string or list of strings
        Name of the physics model file.  If there are multiple physics model
        grids (i.e., if there are subgrids), list them all here.

    noise_model_list : string or list of strings
        Name of the noise model file.  If there are multiple files for
        physgrid_list (because of subgrids), list the noise model file
        associated with each physics model file.

    param_list : list of strings
        names of the parameters to plot

    compl_filter : str
        filter to use for completeness (required for toothpick model)

    output_plot_filename : string
        name of the file in which to save the output plot

    """

    n_params = len(param_list)

    # If there are subgrids, we can't read them all into memory.  Therefore,
    # we'll go through each one and just grab the relevant parts.
    compl_table_list = []

    # make a table for each physics model + noise model
    for physgrid, noise_model in zip(np.atleast_1d(physgrid_list),
                                     np.atleast_1d(noise_model_list)):

        # get the physics model grid - includes priors
        modelsedgrid = SEDGrid(str(physgrid))
        # get list of filters
        short_filters = [
            filter.split(sep="_")[-1].upper()
            for filter in modelsedgrid.filters
        ]
        if compl_filter.upper() not in short_filters:
            raise ValueError("requested completeness filter not present")
        filter_k = short_filters.index(compl_filter.upper())
        print("Completeness from {0}".format(modelsedgrid.filters[filter_k]))

        # read in the noise model
        noisegrid = noisemodel.get_noisemodelcat(str(noise_model))
        # get the completeness
        model_compl = noisegrid["completeness"]
        # close the file to save memory
        noisegrid.close()

        # put it all into a table
        table_dict = {x: modelsedgrid[x] for x in param_list}
        table_dict["compl"] = model_compl[:, filter_k]

        # append to the list
        compl_table_list.append(Table(table_dict))

    # stack all the tables into one
    compl_table = vstack(compl_table_list)

    # import pdb; pdb.set_trace()

    # figure
    fig = plt.figure(figsize=(4 * n_params, 4 * n_params))

    # label font sizes
    label_font = 25
    tick_font = 22

    # load in color map
    cmap = matplotlib.cm.get_cmap("magma")

    # iterate through the panels
    for i, pi in enumerate(param_list):
        for j, pj in enumerate(param_list[i:], i):

            print("plotting {0} and {1}".format(pi, pj))

            # not along diagonal
            if i != j:

                # set up subplot
                plt.subplot(n_params, n_params, i + j * (n_params) + 1)
                ax = plt.gca()

                # create image and labels
                x_col, x_bins, x_label = setup_axis(compl_table, pi)
                y_col, y_bins, y_label = setup_axis(compl_table, pj)
                compl_image, _, _, _ = binned_statistic_2d(
                    x_col,
                    y_col,
                    compl_table["compl"],
                    statistic="mean",
                    bins=(x_bins, y_bins),
                )

                # plot points
                im = plt.imshow(
                    compl_image.T,
                    # np.random.random((4,4)),
                    extent=(
                        np.min(x_bins),
                        np.max(x_bins),
                        np.min(y_bins),
                        np.max(y_bins),
                    ),
                    cmap="magma",
                    vmin=0,
                    vmax=1,
                    aspect="auto",
                    origin="lower",
                )

                ax.tick_params(
                    axis="both",
                    which="both",
                    direction="in",
                    labelsize=tick_font,
                    bottom=True,
                    top=True,
                    left=True,
                    right=True,
                )

                # axis labels and ticks
                if i == 0:
                    ax.set_ylabel(y_label, fontsize=label_font)
                    # ax.get_yaxis().set_label_coords(-0.35,0.5)
                else:
                    ax.set_yticklabels([])
                if j == n_params - 1:
                    ax.set_xlabel(x_label, fontsize=label_font)
                    plt.xticks(rotation=-45)
                else:
                    ax.set_xticklabels([])

            # along diagonal
            if i == j:

                # set up subplot
                plt.subplot(n_params, n_params, i + j * (n_params) + 1)
                ax = plt.gca()

                # create histogram and labels
                x_col, x_bins, x_label = setup_axis(compl_table, pi)
                compl_hist, _, _ = binned_statistic(
                    x_col,
                    compl_table["compl"],
                    statistic="mean",
                    bins=x_bins,
                )
                # make histogram
                _, _, patches = plt.hist(x_bins[:-1],
                                         x_bins,
                                         weights=compl_hist)
                # color each bar by its completeness
                for c, comp in enumerate(compl_hist):
                    patches[c].set_color(cmap(comp))
                    patches[c].set_linewidth = 0.1
                # make a black outline so it stands out as a histogram
                plt.hist(x_bins[:-1],
                         x_bins,
                         weights=compl_hist,
                         histtype="step",
                         color="k")
                # axis ranges
                plt.xlim(np.min(x_bins), np.max(x_bins))
                plt.ylim(0, 1.05)

                ax.tick_params(axis="y",
                               which="both",
                               length=0,
                               labelsize=tick_font)
                ax.tick_params(axis="x",
                               which="both",
                               direction="in",
                               labelsize=tick_font)

                # axis labels and ticks
                ax.set_yticklabels([])
                if i < n_params - 1:
                    ax.set_xticklabels([])
                if i == n_params - 1:
                    ax.set_xlabel(x_label, fontsize=label_font)
                    plt.xticks(rotation=-45)

    # plt.subplots_adjust(wspace=0.05, hspace=0.05)
    plt.tight_layout()

    # add a colorbar
    gs = GridSpec(nrows=20, ncols=n_params)
    cax = fig.add_subplot(gs[0, 2:])
    cbar = plt.colorbar(im, cax=cax, orientation="horizontal")
    cbar.set_label("Completeness", fontsize=label_font)
    cbar.ax.tick_params(labelsize=tick_font)
    gs.tight_layout(fig)

    fig.savefig(output_plot_filename)
    plt.close(fig)
示例#11
0
ax10.set_xlabel(' ')
ax10.set_ylabel(' ')
ax10.set_xlim(axlims)
ax10.set_ylim(axlims)
# ax10.set_title(' ')
ax10.patch.set_facecolor('black')

for comp_map, ax in zip(comp_maps_multi[1:], [ax11, ax12, ax13, ax14]):
    try:
        comp_map.plot(ax, title=' ')
    except:
        ValueError
    ax.set_xlabel(' ')
    ax.set_ylabel(' ')
    ax.set_xlim(axlims)
    ax.set_ylim(axlims)
    # ax.set_title(' ')
    ax.patch.set_facecolor('black')

for ax, title in zip(
    [ax00, ax01, ax02, ax03, ax04],
    ["Briggs -2", "Briggs -1", "Briggs 0", "Briggs 1", "Briggs 2"]):
    ax.set_title(title)

ax00.set_ylabel("No Multiscale (Solar-Y)")
ax10.set_ylabel("Multiscale (Solar-Y)")
ax10.set_xlabel("Solar-X (arcsec)")
gs.tight_layout(fig, h_pad=-2, w_pad=-2)
plt.savefig("briggs_comparison.png", dpi=400)
plt.show()
示例#12
0
                                     norm=MidpointLogNorm(vmin=vmin,
                                                          vmax=vmax,
                                                          midpoint=1),
                                     edgecolors='face',
                                     cmap='bwr')
            ax[i, j].set_xlim(x[0], x[-1])
            ax[i, j].set_ylim(y[0], y[-1])
            if i != nrows - 1:
                ax[i, j].xaxis.set_ticklabels([])
            if j == 1:
                ax[i, j].yaxis.set_ticklabels([])

    ax[0, 0].xaxis.set_label_position("top")
    ax[0, 1].xaxis.set_label_position("top")
    ax[0, 1].yaxis.set_label_position("right")
    ax[1, 1].yaxis.set_label_position("right")
    ax[0, 0].set_xlabel('Windowing')
    ax[0, 1].set_xlabel('Binning')
    ax[1, 0].set_xlabel('Observed Frequency [MHz]', labelpad=10)
    ax[1, 0].xaxis.set_label_coords(1, -0.1)
    ax[0, 1].set_ylabel('Skewness ($S_3$)')
    ax[1, 1].set_ylabel('Kurtosis ($S_4$)')
    ax[1, 0].set_ylabel('Window/Bin Size [MHz]', labelpad=10)
    ax[1, 0].yaxis.set_label_coords(-0.1, 1)
    cbar = fig.colorbar(im, cax=cax, orientation='vertical', label='SNR')
    fig.suptitle(t.upper(), x=0.45)

    gs0.tight_layout(fig, rect=[0, 0, 1, 1])
    fig.canvas.draw()
    fig.savefig(stats_dir + 'snr_color_chart_{:s}.pdf'.format(t), dpi=200)
示例#13
0
    def poincareplot(self,
                     steps,
                     extralabel=lambda step: '',
                     lims=None,
                     colorbar=True):
        """
        Make a set of Poincare plots for a given step of sequence thereof.

        Parameters
        ----------
        steps : sequence of int or a single integer
            The step(s) to plot
        extralabel : callable, optional 
            A callable with signature `extralabel(step)` that returns an extra
            string label to add to the title for a given step number
        lims : dict, optional 
            A dictionary of limits for the Poincaré plots, with keys `'xy.h',
            'xy.v', 's.h', 's.v'`, and values corresponding to the magnitude of
            the (symmetric) axis limits on the respective plots. The transverse
            plots share limits to ensure that they are always comparable, and
            because we expect roughly axisymmetric beams.
        colorbar : bool, optional
            Boolean indicating whether or not to draw colorbars

        Returns
        -------
        poincarefig : Figure
        """
        try:
            iter(steps)
        except TypeError:
            steps = [steps]

        dx, xp, dy, yp, ds, dps = self.frenet_6D()
        hvar_x = 1e3 * dx[steps, :]
        vvar_x = 1e3 * xp[steps, :]
        hvar_y = 1e3 * dy[steps, :]
        vvar_y = 1e3 * yp[steps, :]
        hvar_s = 1e3 * ds[steps, :]
        vvar_s = dps[steps, :]
        #         sxy_h = max(np.nanstd(hvar_x, axis=1).max(), np.nanstd(hvar_y, axis=1).max())
        #         sxy_v = max(np.nanstd(vvar_x, axis=1).max(), np.nanstd(vvar_y, axis=1).max())
        #         ss_h = np.nanstd(hvar_s, axis=1).max()
        #         ss_v = np.nanstd(vvar_s, axis=1).max()
        sxy_h = max(
            np.nanstd(hvar_x, axis=1).mean(),
            np.nanstd(hvar_y, axis=1).mean())
        sxy_v = max(
            np.nanstd(vvar_x, axis=1).mean(),
            np.nanstd(vvar_y, axis=1).mean())
        ss_h = np.nanstd(hvar_s, axis=1).mean()
        ss_v = np.nanstd(vvar_s, axis=1).mean()
        _lims = {
            'xy.h': 3 * sxy_h,
            'xy.v': 3 * sxy_v,
            's.h': 3 * ss_h,
            's.v': 3 * ss_v,
        }
        if lims:
            _lims.update(lims)

        N = len(steps)
        if colorbar:
            Ncols = 9
        else:
            Ncols = 3

        w_hb = 5
        h_hb = 6
        w_cb = 1
        cb_pad = 1
        w_fig = 3 * w_hb + int(Ncols > 3) * (w_cb + cb_pad)
        h_fig = N * h_hb
        if colorbar:
            widths = [8, 1, 3, 8, 1, 3, 8, 1, 3]
        else:
            widths = [1, 1, 1]
        poincarefig = plt.figure(figsize=(w_fig, h_fig), facecolor='white')
        gs = GridSpec(nrows=N,
                      ncols=Ncols,
                      hspace=0.2,
                      width_ratios=widths,
                      figure=poincarefig)
        for row, step in enumerate(steps):
            hsl = slice(row * h_hb, (row + 1) * h_hb)
            if colorbar:
                ax_x = plt.subplot(gs[row, 0])
                cax_x = plt.subplot(gs[row, 1])
                ax_y = plt.subplot(gs[row, 3])
                cax_y = plt.subplot(gs[row, 4])
                ax_s = plt.subplot(gs[row, 6])
                cax_s = plt.subplot(gs[row, 7])
            else:
                _w = w_fig // 3
                ax_x = plt.subplot(gs[row, 0])
                ax_y = plt.subplot(gs[row, 1])
                ax_s = plt.subplot(gs[row, 2])
            ax_x.set_xlabel(r"$\Delta x$ (mm)")
            ax_x.set_ylabel(r"$x'$ (mrad)")
            hlim, vlim = _lims['xy.h'], _lims['xy.v']
            hb_x = ax_x.hexbin(hvar_x[row],
                               vvar_x[row],
                               extent=[-hlim, hlim, -vlim, vlim])
            if colorbar:
                Colorbar(mappable=hb_x, ax=cax_x)

            ax_y.set_xlabel(r"$\Delta y$ (mm)")
            ax_y.set_ylabel(r"$y'$ (mrad)")
            hb_y = ax_y.hexbin(hvar_y[row],
                               vvar_y[row],
                               extent=[-hlim, hlim, -vlim, vlim])
            ax_y.set_title(f't={self.tns[step]:.2f} ns {extralabel(step)}')
            if colorbar:
                Colorbar(mappable=hb_y, ax=cax_y)

            ax_s.set_xlabel(r"$\Delta s$ (mm)")
            ax_s.set_ylabel(r"$\Delta p_s (\beta\gamma)$")
            hlim, vlim = _lims['s.h'], _lims['s.v']
            hb_s = ax_s.hexbin(hvar_s[row],
                               vvar_s[row],
                               extent=[-hlim, hlim, -vlim, vlim])
            if colorbar:
                Colorbar(
                    mappable=hb_s,
                    ax=cax_s,
                )

        if not colorbar:
            gs.tight_layout(poincarefig)

        return poincarefig
示例#14
0
文件: calc_flux.py 项目: b1quint/btfi
    def run(self, show=False):

        # Load data
        filename = self.filename
        d = pyfits.getdata(filename)
        h = pyfits.getheader(filename)
        path, filename = os.path.split(filename)

        # Get wavelength calibration
        z = np.arange(h['naxis3'])
        w = h['CRVAL3'] + h['CDELT3'] * (z - h['CRPIX3'])

        # Signal-to-noise clipping
        s = d.sum(axis=2)
        s = s.sum(axis=1)

        gauss_pw, _ = self.fit_gaussian(z, s)
        log.debug("Gaussian parameters ---")
        log.debug("p[0] = %.2f" % gauss_pw[0])
        log.debug("p[1] = %.2f" % gauss_pw[1])
        log.debug("p[2] = %.2f" % gauss_pw[2])
        log.debug("p[3] = %.2f" % gauss_pw[3])

        lor_p = self.fit_lorentzian(z, s)
        log.debug("Lorentzian parameters ---")
        log.debug("p[0] = %.2f" % lor_p[0])
        log.debug("p[1] = %.2f" % lor_p[1])
        log.debug("p[2] = %.2f" % lor_p[2])
        log.debug("p[3] = %.2f" % lor_p[3])

        fwhm = np.abs(gauss_pw[2] * 2 * np.sqrt(2 * np.log(2)))
        filter_ = np.where(np.abs(z - gauss_pw[1]) < fwhm, True, False)

        if show:
            plt.plot(z,
                     self.gaussian(gauss_pw, z),
                     'r-',
                     lw=2,
                     label='Gaussian Fit')
            plt.plot(z,
                     self.lorentzian(lor_p, z),
                     'b-',
                     lw=2,
                     label='Lorentzian Fit')
            plt.plot(z, s, 'ko')
            plt.plot(z[filter_], s[filter_], 'ro')
            plt.title('Cube collapsed in XY and fits.')
            plt.grid()
            plt.legend(loc='best')
            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            plt.show()

        signal = d[filter_].mean(axis=0)
        noise = d[np.logical_not(filter_)].mean(axis=0)
        target_snr = 3
        snr = signal / noise
        snr = ndimage.median_filter(snr, 3)
        snr_mask = np.where(signal > target_snr * noise, True, False)

        snr_laplacian = ndimage.morphological_laplace(snr * snr_mask, size=3)
        snr_mask *= np.where(np.abs(snr_laplacian) < 5.0, True, False)

        snr_mask = ndimage.binary_opening(snr_mask, iterations=5)
        snr_mask = ndimage.binary_closing(snr_mask, iterations=5)

        # SNR MASK Based on circular aperture
        # aperture_radius = 1 # arcmin
        # aperture_radius = aperture_radius / 60 # arcmin to deg
        # aperture_radius = np.abs(aperture_radius / h['CD1_1']) # deg to pix
        # print(aperture_radius)
        # c = SkyCoord('7:41:55.400', '-18:12:33.00', frame=h['RADECSYS'].lower(), unit=(u.hourangle, u.deg))
        # x, y = np.arange(h['NAXIS1']), np.arange(h['NAXIS2'])
        # X, Y = np.meshgrid(x, y)
        # center_wcs = wcs.WCS(h)
        # center = center_wcs.wcs_world2pix(c.ra.deg, c.dec.deg, 6563, 1)
        # snr_mask = np.sqrt((X - center[0]) ** 2 + (Y - center[1]) ** 2)
        # snr_mask = np.where(snr_mask < aperture_radius, True, False)
        # plt.imshow(snr_mask)
        # plt.show()

        # SNR MASK Based on squared area
        aperture_width = 256 * 4.048e-1  # arcsec (from original image)
        aperture_width /= 3600  # arcsec to deg
        aperture_width /= np.abs(h['CD1_1'])  # deg to pix
        c = SkyCoord('7:41:55.197',
                     '-18:12:35.97',
                     frame=h['RADECSYS'].lower(),
                     unit=(u.hourangle, u.deg))
        x, y = np.arange(h['NAXIS1']), np.arange(h['NAXIS2'])
        X, Y = np.meshgrid(x, y)
        center_wcs = wcs.WCS(h)
        center = center_wcs.wcs_world2pix(c.ra.deg, c.dec.deg, 6563, 1)
        print(center, np.abs(X - center[0]), np.abs(Y - center[1]),
              aperture_width)
        X = np.where(np.abs(X - center[0]) < aperture_width / 2, True, False)
        Y = np.where(np.abs(Y - center[1]) < aperture_width / 2, True, False)
        snr_mask = X * Y
        plt.imshow(snr_mask)
        plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
        plt.show()

        if show:

            fig1 = plt.figure(figsize=(20, 5))
            plt.title('Signal-to-Noise Ratio')
            gs = GridSpec(1, 3)

            ax1 = plt.subplot(gs[0])
            ax1.set_title('SNR')
            im1 = ax1.imshow(snr,
                             cmap='cubehelix',
                             interpolation='nearest',
                             origin='lower',
                             vmin=3,
                             vmax=20)
            div1 = make_axes_locatable(ax1)
            cax1 = div1.append_axes("right", size="5%", pad=0.05)
            cbar1 = plt.colorbar(mappable=im1,
                                 cax=cax1,
                                 use_gridspec=True,
                                 orientation='vertical')

            ax2 = plt.subplot(gs[1])
            ax2.set_title('Mask')
            im2 = ax2.imshow(np.where(snr_mask, 1, 0),
                             cmap='gray',
                             interpolation='nearest',
                             origin='lower',
                             vmin=0,
                             vmax=1)
            div2 = make_axes_locatable(ax2)
            cax2 = div2.append_axes("right", size="5%", pad=0.05)
            cbar2 = plt.colorbar(mappable=im2,
                                 cax=cax2,
                                 use_gridspec=True,
                                 orientation='vertical')

            cmap = plt.get_cmap('cubehelix')
            cmap.set_bad('w', 1.0)
            ax3 = plt.subplot(gs[2])
            ax3.set_title('Masked')
            im3 = ax3.imshow(np.ma.masked_where(~snr_mask, snr),
                             cmap=cmap,
                             interpolation='nearest',
                             origin='lower',
                             vmin=0)
            div3 = make_axes_locatable(ax3)
            cax3 = div3.append_axes("right", size="5%", pad=0.05)
            cbar3 = plt.colorbar(mappable=im3,
                                 cax=cax3,
                                 use_gridspec=True,
                                 orientation='vertical')

            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            gs.tight_layout(fig1)
            plt.show()

        pyfits.writeto(filename.replace('.', '.SNR.'), snr, h, clobber=True)
        pyfits.writeto(filename.replace('.', '.SNR_LAPLACIAN.'),
                       snr_laplacian,
                       h,
                       clobber=True)

        # Adjust continuum
        continuum = self.fit_continuum(d)

        # Subtract continuum
        continuum = np.reshape(continuum, (continuum.size, 1, 1))
        continuum = np.repeat(continuum, d.shape[1], axis=1)
        continuum = np.repeat(continuum, d.shape[2], axis=2)
        d -= continuum
        del continuum

        # Integrate along the planetary nebulae
        d = d * snr_mask
        d = d.sum(axis=2)
        d = d.sum(axis=1)
        d = d / np.float(h['EXPTIME'])

        gauss_pw, _ = self.fit_gaussian(w, d)
        gauss_pc, _ = self.fit_gaussian(z, d)
        log.info("Gaussian parameters ---")
        log.info("p[0] = %.4f ADU/s" % gauss_pw[0])
        log.info("p[1] = %.4f A = %.4f channels" % (gauss_pw[1], gauss_pc[1]))
        log.info("p[2] = %.4f A = %.4f channels" % (gauss_pw[2], gauss_pc[2]))
        log.info("p[3] = %.4f ADU/s" % gauss_pw[3])

        # total_flux = (gauss_pc[0] - gauss_pc[3]) * np.sqrt(2 * np.pi) \
        #              * gauss_pc[2]
        # log.info("Total flux = (a - d) * sqrt(2pi) * c")
        # log.info(" %.5E ADU/s" % total_flux)

        fwhm = np.abs(gauss_pw[2] * 2 * np.sqrt(2 * np.log(2)))
        filter_ = np.where(np.abs(w - gauss_pw[1]) < fwhm, True, False)

        # d = d - d[~filter_].mean()

        if show:
            plt.plot(w,
                     self.gaussian(gauss_pw, w),
                     'r-',
                     lw=2,
                     label='Gaussian Fit')
            # plt.plot(w, self.lorentzian(lor_p, w), 'b-', lw=2, label='Lorentzian Fit')
            plt.plot(w[~filter_], d[~filter_], 'ko')
            plt.plot(w[filter_], d[filter_], 'ro')
            plt.title('Spectral profile of the masked area.')
            plt.xlabel(u'Wavelenght [$\AA$]')
            plt.ylabel(u'Integrated Count Level [ADU/s]')
            plt.grid()
            plt.legend(loc='best')
            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            plt.show()

        integrated_flux = (gauss_pc[0] - gauss_pc[3]) \
                          * (gauss_pc[2] * np.sqrt(2 * np.pi))
        log.info("Total flux: %.4E adu/s" % (integrated_flux))

        snr_mask = np.where(snr_mask, 1, 0)
        pyfits.writeto(os.path.join(path,
                                    filename.replace('.fits', '.mask.fits')),
                       snr_mask,
                       h,
                       clobber=True)

        return
示例#15
0
    def dustCorrection(self):

        U = 0.3543  #um
        G = 0.4770  #um
        R = 0.6231  #um

        Rv = 3.1

        Cu = self.a(1. / U) + self.b(1. / U) / Rv
        Cg = self.a(1. / G) + self.b(1. / G) / Rv
        Cr = self.a(1. / R) + self.b(1. / R) / Rv

        logging.info("dust correction")
        mainsequence = np.genfromtxt(
            "/home/conor/scripts/StarBug/catalogs/mainsequence.cat")
        mask = (mainsequence[:, 1] < 0.6) * (mainsequence[:, 1] > -0.5)
        mainsequence = mainsequence[mask]
        coeffs = np.polyfit(mainsequence[:, 1], mainsequence[:, 2], 4)
        deriv_coeffs = list(
            reversed([i * c for i, c in enumerate(reversed(coeffs))]))[:-1]

        x = np.arange(-0.7, 0.75, 0.001)
        y = np.polyval(coeffs, x)
        dy = np.polyval(deriv_coeffs, x)

        #for s in self.sourcelist: s.mag[:,1] += 0.1

        Av = np.linspace(0.0, 2.5, 60)
        Chivals = np.zeros(Av.shape)
        #fig = plt.figure()
        for i, av in enumerate(Av):
            for s in self.sourcelist:
                s.construct_colours([2, 0], [0, 1])
                if (s.colours[0] < 2 and s.colours[1] > 0.3):
                    s.colours[1] = np.nan
                s.colours[0] -= ((Cu - Cg) * av)
                s.colours[1] -= ((Cg - Cr) * av)
                #schi = ((s.colours[0] - np.polyval(coeffs, s.colours[1]))**2.0)/(s.colourError[0]**2.0 + (np.polyval(deriv_coeffs, s.colours[1])*s.colourError[1])**2.0  )
                error = np.sqrt(s.colourError[0]**2.0 +
                                (np.polyval(deriv_coeffs, s.colours[1]) *
                                 s.colourError[1])**2.0)
                schi = chisqd(coeffs, s.colours[1], s.colours[0], error)
                if (np.isfinite(schi)):
                    Chivals[i] += schi
                    #plt.scatter(s.colours[1], s.colours[0],c='k', s=0.1)
                    #plt.scatter(s.colours[1], np.polyval(coeffs, s.colours[1]), c='k')
            print(av, Chivals[i], av * (Cu - Cg))
        minAv = Av[np.argmin(Chivals)]
        print(Cu, Cg, Cr)
        print("E(U,G): %f" % (minAv * (Cu - Cg)))
        print("E(G,R): %f" % (minAv * (Cg - Cr)))
        print("E(B-V): %f" % (0.336748 * minAv))
        print(minAv)
        print("Au: %f" % (minAv * Cu))
        print("Ar: %f" % (minAv * Cr))
        print("Ag: %f" % (minAv * Cg))

        avLow = 0
        avHigh = 0
        for i in range(len(Chivals) - 1):
            if ((Chivals[i] > (min(Chivals) + 1)) and (Chivals[i + 1] <
                                                       (min(Chivals) + 1))):
                avLow = Av[i]
            if ((Chivals[i] < (min(Chivals) + 1)) and (Chivals[i + 1] >
                                                       (min(Chivals) + 1))):
                avHigh = Av[i]

        chix = []
        chiy = []
        chiyerr = []

        fig = plt.figure(figsize=(6, 8))
        gs = GridSpec(5, 3, hspace=0.9)

        ax = plt.subplot(gs[:3, :])
        ax.set_ylim(-1, 3)
        plt.gca().invert_yaxis()
        ax2 = plt.subplot(gs[3:, :])
        #ax.axvline(-0.526)
        #ax.axhline(-0.252)
        ax.scatter(mainsequence[:, 1], mainsequence[:, 2], c='k', s=10)

        for s in self.sourcelist:
            s.construct_colours([2, 0], [0, 1])
            ax.scatter(s.colours[1], s.colours[0], c='r', marker='*', s=10)
            s.mag[:, 0] -= (Cg * minAv)
            s.mag[:, 1] -= (Cr * minAv)  #+0.07
            s.mag[:, 2] -= (Cu * minAv)

            s.magerr[:, 0] = np.sqrt(s.magerr[:, 0]**2.0 +
                                     (Cg * 0.5 * (avLow + avHigh))**2.0)
            s.magerr[:, 1] = np.sqrt(s.magerr[:, 1]**2.0 +
                                     (Cr * 0.5 * (avLow + avHigh))**2.0)
            s.magerr[:, 2] = np.sqrt(s.magerr[:, 2]**2.0 +
                                     (Cu * 0.5 * (avLow + avHigh))**2.0)

            s.construct_colours([2, 0], [0, 1])
            ax.scatter(s.colours[1], s.colours[0], c='b', marker='*', s=10)

        #print(get_CHIerr(chix,chiy,chiyerr, coeffs))
        ax.plot(x, y)
        ax.tick_params(direction='in',
                       which='both',
                       right=True,
                       top=True,
                       axis='both')
        ax2.tick_params(direction='in',
                        which='both',
                        right=True,
                        top=True,
                        axis='both')
        #plt.axvline(0.3)
        #plt.axhline(2)

        ax.set_xlabel("(g-r)")
        ax.set_ylabel("(u-g)")

        startx = 0.7
        starty = 0
        ax.arrow(startx,
                 starty,
                 -((Cg - Cr) * minAv * 0.5),
                 -((Cu - Cg) * minAv * 0.4),
                 head_width=0.02)
        ax.arrow(startx,
                 starty,
                 0,
                 -((Cu - Cg) * minAv * 0.4),
                 head_width=0.02)
        ax.arrow(startx,
                 starty - ((Cu - Cg) * minAv * 0.5),
                 -((Cg - Cr) * minAv * 0.5),
                 0,
                 head_width=0.02)

        ax.plot(np.nan, np.nan, marker='*', c='r', label="Reddened")
        ax.plot(np.nan, np.nan, marker='*', c='b', label="DeReddened")
        ax.plot(np.nan, np.nan, marker='*', c='k', label="Pleiades")
        ax.legend(loc=3)

        ax2.plot(Av,
                 Chivals,
                 c='k',
                 label=r"$Av: %.3f^{+%.3f}_{-%.3f}$" %
                 (minAv, avHigh - minAv, minAv - avLow))
        ax2.set_xlabel('Av')
        ax2.set_ylabel(r'$\chi^2$')
        ax2.legend()

        ax2.axvline(avLow, c='r')
        ax2.axvline(minAv, c='b')
        ax2.axvline(avHigh, c='g')
        gs.tight_layout(fig)
        fig.savefig('out/%s_dust.png' % self.name)
示例#16
0
        # Axes labels
        fig.text(0.01, 0.5, ylabels[stat], rotation='vertical',
                 horizontalalignment='left', verticalalignment='center')
        fig.text(0.5, 0.01, 'Frequency [MHz]', horizontalalignment='center',
                 verticalalignment='bottom')
        fig.text(0.5, 0.99, 'Ionized Fraction', horizontalalignment='center',
                 verticalalignment='top')

        # Legend
        # Legend parameters
        handlers = [
            Line2D([], [], linestyle=':', color='black', linewidth=1),
            Line2D([], [], linestyle='--', color='black', linewidth=1),
            Line2D([], [], linestyle='-', color='black', linewidth=1),
            Patch(color='0.85'),
            Patch(color='0.7'),
            Patch(color='0.55')
        ]
        labels = ['MWA Phase I Core', 'HERA37', 'HERA331',
                  'MWA Phase I Core Error', 'HERA37 Error', 'HERA331 Error']

        plt.figlegend(handles=handlers, labels=labels, loc=(0.6, 0.8),
                      ncol=1, fontsize='medium')

        # Tidy up
        gs.tight_layout(fig, rect=[0.02, 0.02, 0.99, 0.98])
        gs.update(wspace=0, hspace=0)
        fig.canvas.draw()
        fig.savefig(stats_dir + stat + '_poster.pdf', dpi=200)
        plt.close()
示例#17
0
             verticalalignment='top',
             horizontalalignment='left',
             transform=pax.transAxes)
    pax.xaxis.set_major_locator(FixedLocator([-10, -1, 0, 1, 10]))
    minor_locs = np.hstack(
        (range(-15, -10), range(-9, -1), np.arange(-0.9, 0, 0.1),
         np.arange(0.1, 1.0, 0.1), range(2, 10), range(11, 16)))
    pax.xaxis.set_minor_locator(FixedLocator(minor_locs))

    # Label images
    bbox = dict(boxstyle="round", fc='0.8', alpha=0.8, edgecolor='black')
    for ax, lb in zip(imax, labels):
        ax.text(0.03,
                0.97,
                lb,
                transform=ax.transAxes,
                horizontalalignment='left',
                verticalalignment='top',
                color='black',
                bbox=bbox,
                size='small')

    # Tidy up
    gs0.tight_layout(fig, rect=[0, -0.01, 1, 0.98])
    gs0.update(hspace=0.22)
    fig.canvas.draw()
    fig.savefig(pdf_dir +
                'mwa128_pdf_maps_xi{:.3f}_{:.3f}MHz.pdf'.format(xi, f),
                dpi=200)
    plt.close()
class ConstantViewer(object):
    """
Class meant to visualize the constants of a log file for the Motion Profiler of Walton Robotics
    """
    def __init__(self,
                 clf,
                 automatically_find_remove_outliers: bool = False,
                 manually_find_remove_outliers: bool = True) -> None:
        """
        :param clf: the model to use to separate the data
        :param automatically_find_remove_outliers: True if black dots should be placed in the 3d plot to represent the outliers False otherwise
        """
        super().__init__()

        self.manually_find_remove_outliers = manually_find_remove_outliers
        self.showing = False
        self.show_outliers = automatically_find_remove_outliers
        self.clf = clf

        self.fig = None
        self.gs = None
        self.master_plot = None
        self.time_power = None
        self.time_velocity = None
        self.power_velocity = None

        self.file_data = None
        self.headers = None
        self.new_scaled_features = None
        self.features = None
        self.outliers = None
        self.labels = None
        self.color_labels = None
        self.outlier_detector = None

        self.kV = 1
        self.kK = 1
        self.kAcc = 1

    def show(self):
        """
    Shows the figure
        """

        if not self.showing:
            self.fig = plt.figure("Scaled 3d  data")

            fig_manager = plt.get_current_fig_manager()
            fig_manager.window.showMaximized()

            self.gs = GridSpec(3, 4, self.fig)

            self.master_plot = self.fig.add_subplot(self.gs[:3, :3],
                                                    projection='3d')
            self.time_velocity = self.fig.add_subplot(self.gs[0, -1])
            self.time_power = self.fig.add_subplot(self.gs[1, -1])
            self.power_velocity = self.fig.add_subplot(self.gs[2, -1])

            self.gs.tight_layout(self.fig)
            self.clear_graphs()

            plot_subplots(
                self.new_scaled_features, self.headers,
                (self.time_velocity, self.time_power, self.power_velocity),
                self.color_labels)

            self.plot_3d_plot(self.new_scaled_features, self.headers,
                              self.color_labels)

            if self.show_outliers:
                self.master_plot.scatter(self.outliers[:, 0],
                                         self.outliers[:, 1],
                                         self.outliers[:, 2],
                                         c="black")
                plot_hyperplane(self.outlier_detector,
                                self.master_plot,
                                interval=.04,
                                colors="orange")

            self.show_constants_graph(self.features,
                                      self.file_data,
                                      self.labels,
                                      c=self.color_labels)

            self.fig.show()
            plt.show()
            self.showing = True

    def close_all(self):
        """
    Closes the figure
        """
        if self.showing:
            self.showing = False
            plt.close(self.fig)

    def plot_3d_plot(self, features, headers, labels):
        """
    PLots the features in a 3d plot including the hyperplane that separates the data
        :param features: the features to use to plot in the graph
        :param headers: the axis titles
        :param labels: the color of each data point
        """
        self.master_plot.scatter(features[:, 0],
                                 features[:, 1],
                                 features[:, 2],
                                 c=labels)
        self.master_plot.set_xlabel(headers[0])
        self.master_plot.set_ylabel(headers[1])
        self.master_plot.set_zlabel(headers[2])

        plot_hyperplane(self.clf, self.master_plot, colors='orange')

    def graph(self, file_data):
        """
    Graphs the features from the log file. Creates a 3D graph with time, average power to motors and velocity as axises.
    It also decomposes the dimensions into individual 2D graphs.
        :param file_data: the log file to use to extract the data from
        """

        self.file_data = file_data
        self.features, self.headers = get_features(file_data)

        # FIXME make it so that the outliers can be visualized as well
        self.new_scaled_features, self.features = manipulate_features(
            self.features, file_data)
        # features = scaler.inverse_transform(new_scaled_features)

        if self.show_outliers:
            self.new_scaled_features, self.outliers, self.outlier_detector = find_and_remove_outliers(
                self.new_scaled_features)

        if self.manually_find_remove_outliers:
            selector = remove_outliers(self.new_scaled_features)

            self.new_scaled_features = self.new_scaled_features[
                selector.indexes]
            self.features = self.features[selector.indexes]

        self.labels = self.clf.predict(self.new_scaled_features)
        self.color_labels = list(
            map(lambda x: 'r' if x == 0 else 'b', self.labels))

    def clear_graphs(self):
        """
    Clears all the axes
        """
        for ax in (self.master_plot, self.time_velocity, self.time_power,
                   self.power_velocity):
            ax.cla()

    def show_grid(self):
        """
    Shows the grids for the major ticks in the plot.
        """
        for ax in (self.time_velocity, self.time_power, self.power_velocity):
            ax.grid(True)

    def show_constants_graph(self, features, file_data, labels, c=None):
        """
    Creates an addition figure that will display the a graph with the constants on it and also the lines of best fit of
    the accelerating portion of it, the decelerating portion of it and the average of both of those lines
        :param features: the features to use to show the graph and find the constants from
        :param file_data: the whole file data
        :param labels: the labels to say if a data point is accelerating or not
        :param c: the color to plot the points
        :return the constants for the motion profiling kV, kK and kAcc
        """
        if is_straight_line(file_data):
            easygui.msgbox(
                "It was determined that the robot was trying to go straight. "
                "As an ongoing feature the program will be able detect kLag, etc... "
                "however for the instance this features has not been added")

        constant_figure = plt.figure("Constants graph")
        constants_plot = constant_figure.gca()
        constants_plot.set_xlabel("Velocity")
        constants_plot.set_ylabel("Average Power")

        # fig_manager = plt.get_current_fig_manager()
        # fig_manager.window.showMaximized()
        constant_figure.canvas.manager.window.showMaximized()

        x = features[:, 1]
        y = features[:, 0]

        constants_plot.scatter(x, y, c=labels if c is None else c)

        acceleration_mask = labels == visualize.ACCELERATING
        coef_accelerating, intercept_accelerating = find_linear_best_fit_line(
            x[acceleration_mask], y[acceleration_mask])
        deceleration_mask = labels == visualize.DECELERATING
        coef_decelerating, intercept_decelerating = find_linear_best_fit_line(
            x[deceleration_mask], y[deceleration_mask])

        x_lim = np.array(constants_plot.get_xlim())
        y_lim = np.array(constants_plot.get_ylim())

        x, y = get_xy_limited(intercept_accelerating, coef_accelerating, x_lim,
                              y_lim)
        constants_plot.plot(x, y)
        x, y = get_xy_limited(intercept_decelerating, coef_decelerating, x_lim,
                              y_lim)
        constants_plot.plot(x, y)
        # constants_plot.plot(x_lim, coef_accelerating * x_lim + intercept_accelerating)
        # constants_plot.plot(x_lim, coef_decelerating * x_lim + intercept_decelerating)

        average_coef = (coef_accelerating + coef_decelerating) / 2
        average_intercept = (intercept_accelerating +
                             intercept_decelerating) / 2
        # constants_plot.plot(x_lim, average_coef * x_lim + average_intercept)

        x, y = get_xy_limited(average_intercept, average_coef, x_lim, y_lim)
        constants_plot.plot(x, y)

        acceleration_coefficient = (coef_accelerating - average_coef)
        acceleration_intercept = (intercept_accelerating - average_intercept)
        k_acc = ((x.max() + x.min()) /
                 2) * acceleration_coefficient + acceleration_intercept

        self.kV = average_coef
        self.kK = average_intercept
        self.kAcc = k_acc

        bbox_props = dict(boxstyle="round,pad=0.3", fc="cyan", ec="b", lw=2)
        constants_plot.text(x_lim[0],
                            y_lim[1],
                            "kV: {}\nkK: {}\nkAcc: {}".format(
                                average_coef, average_intercept, k_acc),
                            ha="left",
                            va="top",
                            bbox=bbox_props)

        self.copy_constants()

        constant_figure.canvas.callbacks.connect('button_press_event',
                                                 self.handle_mouse_click)

        return average_coef, average_intercept, k_acc

    def handle_mouse_click(self, event):
        if event.dblclick:
            self.copy_constants()

    def copy_constants(self):
        easygui.msgbox(
            "The constants have been saved into your clipboard. Press Ctrl+V to paste them."
        )

        constants = "public static final double kV = {0};\r\n" \
                    "public static final double kK = {1};\r\n" \
                    "public static final double kAcc = {2};\r\n" \
            .format(self.kV, self.kK, self.kAcc)

        pyperclip.copy(constants)
示例#19
0
def get_estimator_boundingbox(tiff_file,
                              channel=0,
                              outputdir='.',
                              w0=1,
                              w1=100,
                              h0=10,
                              h1=1000,
                              acut=0.9,
                              aratio_min=2.,
                              aratio_max=100.,
                              border_pad=5,
                              emin=1.0e-4,
                              debug=False,
                              threshold=None):
    """
    INPUT:
      * file to a tiff image.
      * (w0,w1): minimum and maximum width for bounding box in pixels.
      * (l0,l1): minimum and maximum length for bounding box in pixels.
      * acut: minimum area/rectangle bounding box ratio.
      * threshold is a lower threshold (everything below is set to zero). Value must be a float between 0 and 1. 1 is the maximum, eg. 255 or 65535.
    OUTPUT:
      * 2D matrix of weights corresponding to the probability that a pixel belongs to a cell.

    USEFUL DOCUMENTATION:
      * https://docs.opencv.org/3.4.3/dd/d49/tutorial_py_contour_features.html
      * https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=blur#blur
      * https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html
      * https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html
      * https://docs.opencv.org/3.4/db/d5c/tutorial_py_bg_subtraction.html
    """

    bname = os.path.splitext(os.path.basename(tiff_file))[0]

    ## read the input tiff_file
    img = get_tiff2ndarray(tiff_file, channel=channel)
    #img0 = np.copy(img)

    # rescale dynamic range linearly (important for OTSU)
    amin = np.min(img)
    amax = np.max(img)
    print "amin = {:.1g}    amax = {:.1g}".format(amin, amax)
    img = (np.float_(img) - amin) / (amax - amin)

    ## thresholding to binary mask
    norm8 = float(2**8 - 1)
    norm16 = float(2**16 - 1)
    if threshold is None:
        print "OTSU thresholding"
        # convert to 8-bit image (Open CV requirement for OTSU)
        img = np.array(255 * img, np.uint8)
        img8 = np.copy(img)
        # OTSU threshold
        ret, img = cv2.threshold(img, 0, 255,
                                 cv2.THRESH_BINARY + cv2.THRESH_OTSU)
        thres1 = float(ret) / norm8 * (amax - amin) + amin
        thres8 = np.uint8(thres1 * norm8)
        thres16 = np.uint16(thres1 * norm16)
    else:
        thres1 = threshold
        thres8 = np.uint8(thres1 * norm8)
        thres16 = np.uint16(thres1 * norm16)
        ret = max((thres1 - amin) / (amax - amin), 0)  # value in rescaled DNR
        ret = np.uint8(255 * ret)  # uint8
        print "thres1 = {:.1g}    threshold_rescaled_DNR_uint8 = {:d}".format(
            thres1, ret)
        # convert to 8-bit image (Open CV requirement for OTSU)
        img = np.array(255 * img, np.uint8)
        img8 = np.copy(img)
        # input threshold
        ret1, img = cv2.threshold(img, ret, 255, cv2.THRESH_BINARY)
    print "thres1 = {:.1g}    thres8 = {:d}    thres16 = {:d}".format(
        thres1, thres8, thres16)
    img_bin = np.copy(img)

    ## opening/closing operations
    kernel = np.ones((3, 3), np.uint8)  # smoothing kernel
    img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
    #img_opening = np.copy(img)
    img = cv2.erode(img, kernel, iterations=1)
    #img_closing = np.copy(img)
    img = cv2.dilate(img, kernel, iterations=1)
    img_morph = np.copy(img)

    ## find connected components
    ncomp, labels = cv2.connectedComponents(img)
    print "Found {:d} objects".format(ncomp)

    ## compute the bounding box for the identified labels
    #for n in range(ncomp):
    height, width = img.shape
    Y, X = np.mgrid[0:height, 0:width]
    boundingboxes = []
    boundingboxes_upright = []
    pointsperbox = []
    for n in np.arange(ncomp):
        idx = (labels == n)
        # pixels coordinates for the label
        points = np.transpose([X[idx], Y[idx]])
        pointsperbox.append(len(points))

        # upright rectangles
        bb = cv2.boundingRect(points)
        boundingboxes_upright.append(bb)

        # rotated rectangles
        bb = cv2.minAreaRect(points)
        boundingboxes.append(bb)

    # estimator matrix
    ## compute scores
    scores = []
    for n in np.arange(ncomp):
        bb = boundingboxes[n]
        bb_upright = boundingboxes_upright[n]
        area = pointsperbox[n]

        # get bounding box width and height
        xymid, wh, angle = bb
        w, h = wh
        if w > h:
            wtp = w
            w = h
            h = wtp

        area_rect = w * h
        aval = area / area_rect
        aratio = h / w
        #        print "w={:.1f}    h={:.1f}  aval={:.2e}  aratio={:.1f}".format(w,h,aval,aratio)

        # computing score
        score = 1.
        score *= min(1, np.exp((w - w0)))  # penalize w < w0
        score *= min(1, np.exp(w1 - w))  # penalize w > w1
        score *= min(1, np.exp((h - h0)))  # penalize w < w0
        score *= min(1, np.exp(h1 - h))  # penalize w > w1
        score *= min(1, np.exp(aval - acut))  # penalize area/rect < acut
        score *= min(1, np.exp(aratio -
                               aratio_min))  # penalize aratio < aratio_min
        score *= min(1, np.exp(aratio_max -
                               aratio))  # penalize aratio > aratio_max

        # check that box corners of an upright bounding box are within the image plus some pad
        x, y, ww, hh = bb_upright
        x0 = x - border_pad
        y0 = y - border_pad
        x1 = x + ww + border_pad
        y1 = y + hh + border_pad
        #        print "a0 = {:d}  b0 = {:d}".format(x,y)
        #        print "a1 = {:d}  b1 = {:d}".format(x+ww,y+hh)
        #        print "x0 = {:d}  y0 = {:d}".format(x0,y0)
        #        print "x1 = {:d}  y1 = {:d}".format(x1,y1)
        if not (x0 >= 0 and x1 < width and y0 >= 0 and y1 < height):
            score = 0.

        # discard small values
        if score < emin:
            score = 0.
        scores.append(score)

    # estimator matrix
    eimg = np.zeros(img.shape, dtype=np.float_)
    for n in np.arange(ncomp):
        idx = (labels == n)
        eimg[idx] = scores[n]
    nz = np.sum(eimg > 0.)
    ntot = len(np.ravel(eimg))
    print "nz = {:d} / {:d}    sparcity index = {:.2e}".format(
        nz, ntot,
        float(nz) / float(ntot))
    efname = bname
    #efile = os.path.join(outputdir,efname+'.txt')
    #efile = os.path.join(outputdir,efname+'.pkl')
    efile = os.path.join(outputdir, efname + '.npz')
    with open(efile, 'w') as fout:
        #np.savetxt(fout, eimg)
        #pkl.dump(eimg,fout)
        ssp.save_npz(efile, ssp.coo_matrix(eimg), compressed=False)
    print "{:<20s}{:<s}".format('est. file', efile)

    if debug:
        debugdir = os.path.join(outputdir, 'debug')
        if not os.path.isdir(debugdir):
            os.makedirs(debugdir)
        # plots
        import matplotlib.pyplot as plt
        import matplotlib.patches
        from matplotlib.path import Path
        import matplotlib.collections
        from matplotlib.gridspec import GridSpec

        ## rescale dynamic range linearly
        img_base = np.array(img8, dtype=np.float_) / 255.
        img_base = (img_base - np.min(img_base)) / (np.max(img_base) -
                                                    np.min(img_base))
        img_base = np.array(img_base * 255, dtype=np.uint8)
        ncolors = (20 - 1)
        labels_iterated = np.uint8(labels -
                                   np.int_(labels / ncolors) * ncolors) + 1
        images = [img_base, img_bin, img_morph, labels_iterated, eimg]
        titles = [
            'original', 'binary (thres = {:d})'.format(thres8),
            'closing/opening', 'bounding box', 'estimator'
        ]
        cmaps = ['gray', 'gray', 'gray', 'tab20c', 'viridis']
        nfig = len(images)
        nrow = int(np.ceil(np.sqrt(nfig)))
        ncol = nfig / nrow
        if (ncol * nrow < nfig): ncol += 1
        fig = plt.figure(num=None, figsize=(ncol * 4, nrow * 3))
        gs = GridSpec(nrow, ncol, figure=fig)
        axes = []
        for r in range(nrow):
            for c in range(ncol):
                ind = r * ncol + c
                if not (ind < nfig):
                    break
                ax = fig.add_subplot(gs[r, c])
                axes.append(ax)
                ax.set_title(titles[ind].upper())
                cf = ax.imshow(images[ind], cmap=cmaps[ind])
                ax.set_xticks([]), ax.set_yticks([])

                if titles[ind] == 'bounding box':
                    # draw bounding boxes
                    rects = []
                    rects_upright = []
                    codes = [
                        Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO,
                        Path.CLOSEPOLY
                    ]
                    for n in range(ncomp):
                        bb_upright = boundingboxes_upright[n]
                        bb = boundingboxes[n]
                        # upright rect
                        xlo, ylo, w, h = bb_upright
                        rect = matplotlib.patches.Rectangle((xlo, ylo),
                                                            width=w,
                                                            height=h,
                                                            fill=False)
                        rects_upright.append(rect)

                        # rect
                        verts = cv2.boxPoints(bb)
                        verts = np.concatenate((verts, [verts[0]]))
                        path = Path(verts, codes)
                        rect = matplotlib.patches.PathPatch(path)
                        rects.append(rect)

                    col = matplotlib.collections.PatchCollection(
                        rects_upright,
                        edgecolors='k',
                        facecolors='none',
                        linewidths=0.5)
                    ax.add_collection(col)
                    col = matplotlib.collections.PatchCollection(
                        rects,
                        edgecolors='r',
                        facecolors='none',
                        linewidths=0.5)
                    ax.add_collection(col)

                if titles[ind] == 'estimator':
                    fig.colorbar(cf, ax=ax)

        fname = "{}_estimator_debug".format(bname)
        fileout = os.path.join(debugdir, fname + '.png')
        gs.tight_layout(fig, w_pad=0)
        plt.savefig(fileout, dpi=300)
        print "{:<20s}{:<s}".format('debug file', fileout)
        plt.close('all')
    # from agarpad code: end """
    """ canny: start
    #test canny filtering
    print np.min(img), np.max(img)
    maxthres=2500
    minthres=100
    edges = cv2.Canny(img,threshold1=minthres,threshold2=maxthres,apertureSize=5)
    print np.unique(edges)
    print "START TEST"
    import matplotlib.pyplot as plt
    fig = plt.figure(num=None,figsize=(8,4))
    plt.subplot(121)
    plt.imshow(img, cmap='gray')
    plt.xticks([]),plt.yticks([])
    plt.subplot(122)
    plt.imshow(edges, cmap='gray')
    plt.xticks([]),plt.yticks([])
    fileout = os.path.join(os.getcwd(),'test_get_estimator_contours.png')
    fig.tight_layout()
    plt.savefig(fileout,dpi=300)
    print "writing: ", fileout
    plt.close('all')

    fig = plt.figure(num=None,figsize=(4,4))
    hist,hedges = np.histogram(np.ravel(img), bins='auto')
    plt.bar(hedges[:-1], hist, np.diff(hedges), facecolor='blue', lw=0)
    fileout = os.path.join(os.getcwd(),'test_get_estimator_contours_histogram.png')
    fig.tight_layout()
    plt.savefig(fileout,dpi=300)
    print "writing: ", fileout
    plt.close('all')
    sys.exit()
    print "END TEST"
    #test
    # canny: start """

    return os.path.realpath(efile)
示例#20
0
文件: calc_flux.py 项目: b1quint/btfi
    def fit_continuum(self, data):
        """
        Use the data and the mask to estimate and fit the continuum levels.

        :param collapsed_data: data-cube in 3D array.
        :return: array containing the fitted polynomium.
        """
        collapsed_data = np.mean(data, axis=0)
        norm = ImageNormalize(vmin=collapsed_data.min(),
                              vmax=collapsed_data.max(),
                              stretch=LogStretch())

        fig = plt.figure(figsize=(8, 6))
        fig.suptitle('Draw a rectangle using the mouse. \nPress <ENTER> to ' +
                     'accept it and carry on or "Q" to leave.')

        gs = GridSpec(3, 3, height_ratios=[1, 12, 3], width_ratios=[1, 10, 1])
        ax1 = plt.subplot(gs[4])
        im1 = ax1.imshow(collapsed_data,
                         origin='lower',
                         interpolation='nearest',
                         cmap='hot_r',
                         norm=norm)
        ax1.grid()

        self.ax2 = plt.subplot(gs[7])
        self.ax2.xaxis.set_ticklabels([])
        self.ax2.yaxis.set_ticklabels([])

        self.RS = MyRectangleSelector(ax1,
                                      self.line_select_callback,
                                      drawtype='box',
                                      useblit=True,
                                      button=[1],
                                      minspanx=5,
                                      minspany=5,
                                      spancoords='pixels',
                                      rectprops=dict(facecolor='green',
                                                     edgecolor='green',
                                                     alpha=0.5,
                                                     fill=True))

        self.RS.set_active(True)
        self.RS.connect_event('button_press_event', self.on_mouse_click)
        self.RS.connect_event('button_release_event',
                              lambda e: self.on_mouse_release(e, data))
        self.RS.connect_event('key_press_event', self.on_key_press)

        gs.tight_layout(fig)
        plt.show()

        x1 = min(self.x1, self.x2)
        x2 = max(self.x1, self.x2)
        y1 = min(self.y1, self.y2)
        y2 = max(self.y1, self.y2)

        if x1 == x2:
            log.warning('x1 and x2 are the same. Using the whole image width.')
            x1 = 0
            x2 = -1

        if y1 == y2:
            log.warning(
                'y1 and y2 are the same. Using the whole image height.')
            y1 = 0
            y2 = -1

        data = data[:, y1:y2, x1:x2]
        data = data.mean(axis=1)
        data = data.mean(axis=1)
        median, std = np.median(data), np.std(data)
        c = np.where(np.abs(data - median) < std, True, False)
        x = np.arange(data.size)
        p = np.polyfit(x[c], data[c], 3)
        y = np.polyval(p, x)

        return y
示例#21
0
l1 = dax.plot(x, s, label='Field {:d}'.format(field), zorder=3)
l2 = dax.plot(x, s_mean, 'k:', label='Full sky', zorder=3)
l3 = dax.fill_between(x,
                      s_mean - s_err,
                      s_mean + s_err,
                      label='Single-field sample variance',
                      color='0.5',
                      alpha=0.5,
                      zorder=2)
dax.axhline(0, ls='--', color='k', zorder=0)
dax.set_xlim(x[0], x[-1])
dax.spines['top'].set_visible(False)
dax.set_xlabel('Observed Frequency [MHz]')
dax.set_ylabel('Kurtosis')

gs.tight_layout(fig, rect=[0, 0, 0.95, 0.92])
gs.update(hspace=0.1, wspace=0)
cbar = fig.colorbar(im, cax=cax)

# Draw lines from peaks to spines of images
fx1, fy1 = fig.transFigure.inverted().transform(
    dax.transData.transform([158.435, 3.61]))
fx2, fy2 = fig.transFigure.inverted().transform(
    dax.transData.transform([170.035, 0.025]))
m1xl, m1yl = fig.transFigure.inverted().transform(
    max1.transAxes.transform([0, 0]))
m1xr, m1yr = fig.transFigure.inverted().transform(
    max1.transAxes.transform([1, 0]))
m2xl, m2yl = fig.transFigure.inverted().transform(
    max2.transAxes.transform([0, 0]))
m2xr, m2yr = fig.transFigure.inverted().transform(
示例#22
0
文件: vmap_calc.py 项目: b1quint/btfi
    def run(self, show=False):

        # Load data
        filename = self.filename
        d = pyfits.getdata(filename)
        h = pyfits.getheader(filename)
        path, filename = os.path.split(filename)

        # Get wavelength calibration
        z = np.arange(h['naxis3'])
        w = h['CRVAL3'] + h['CDELT3'] * (z - h['CRPIX3'])

        # Convert wavelength from nm to Angstrom
        # if w.all() < 1000.:
        #     w *= 10

        # Signal-to-noise clipping
        s = d.sum(axis=2)
        s = s.sum(axis=1)

        gauss_p, _ = self.fit_gaussian(z, s)
        log.debug("Gaussian parameters ---")
        log.debug("p[0] = %.2f" % gauss_p[0])
        log.debug("p[1] = %.2f" % gauss_p[1])
        log.debug("p[2] = %.2f" % gauss_p[2])
        log.debug("p[3] = %.2f" % gauss_p[3])

        lor_p = self.fit_lorentzian(z, s)
        log.debug("Lorentzian parameters ---")
        log.debug("p[0] = %.2f" % lor_p[0])
        log.debug("p[1] = %.2f" % lor_p[1])
        log.debug("p[2] = %.2f" % lor_p[2])
        log.debug("p[3] = %.2f" % lor_p[3])

        fwhm = np.abs(gauss_p[2] * 2 * np.sqrt(2 * np.log(2)))
        filter_ = np.where(np.abs(z - gauss_p[1]) < fwhm, True, False)

        if show:
            plt.plot(z, self.gaussian(gauss_p, z), 'r-', lw=2, label='Gaussian Fit')
            plt.plot(z, self.lorentzian(lor_p, z), 'b-', lw=2, label='Lorentzian Fit')
            plt.plot(z, s, 'ko')
            plt.plot(z[filter_], s[filter_], 'ro')
            plt.title('Cube collapsed in XY and fits.')
            plt.grid()
            plt.legend(loc='best')
            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            plt.show()

        signal = d[filter_].mean(axis=0)
        noise = d[np.logical_not(filter_)].mean(axis=0)
        snr = signal / noise
        snr = ndimage.median_filter(snr, 3)
        snr_mask = np.where(snr > 2, True, False)

        snr_laplacian = ndimage.morphological_laplace(snr * snr_mask, size=3)
        snr_mask *= np.where(np.abs(snr_laplacian) < 5.0, True, False)

        snr_mask = ndimage.binary_opening(snr_mask, iterations=5)
        snr_mask = ndimage.binary_closing(snr_mask, iterations=5)
        if show:

            fig1 = plt.figure(figsize=(20, 5))
            plt.title('Signal-to-Noise Ratio')
            gs = GridSpec(1, 3)

            ax1 = plt.subplot(gs[0])
            ax1.set_title('SNR')
            im1 = ax1.imshow(snr, cmap='cubehelix', interpolation='nearest',
                       origin='lower', vmin=0)
            div1 = make_axes_locatable(ax1)
            cax1 = div1.append_axes("right", size="5%", pad=0.05)
            cbar1 = plt.colorbar(mappable=im1, cax=cax1, use_gridspec=True, 
                                 orientation='vertical')

            ax2 = plt.subplot(gs[1])
            ax2.set_title('Mask')
            im2 = ax2.imshow(np.where(snr_mask, 1, 0), cmap='gray',
                             interpolation='nearest', origin='lower',
                             vmin=0, vmax=1)
            div2 = make_axes_locatable(ax2)
            cax2 = div2.append_axes("right", size="5%", pad=0.05)
            cbar2 = plt.colorbar(mappable=im2, cax=cax2, use_gridspec=True, 
                                 orientation='vertical')

            cmap = plt.get_cmap('cubehelix')
            cmap.set_bad('w', 1.0)
            ax3 = plt.subplot(gs[2])
            ax3.set_title('Masked')
            im3 = ax3.imshow(np.ma.masked_where(~snr_mask, snr), cmap=cmap, interpolation='nearest',
                       origin='lower', vmin=0)
            div3 = make_axes_locatable(ax3)
            cax3 = div3.append_axes("right", size="5%", pad=0.05)
            cbar3 = plt.colorbar(mappable=im3, cax=cax3, use_gridspec=True, orientation='vertical')

            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            gs.tight_layout(fig1)
            plt.show()

        pyfits.writeto(filename.replace('.','.SNR.'), snr, h, clobber=True)
        pyfits.writeto(filename.replace('.','.SNR_LAPLACIAN.'), snr_laplacian, h, clobber=True)

        # Adjust continuum
        continuum = self.fit_continuum(d)

        # Subtract continuum
        continuum = np.reshape(continuum, (continuum.size, 1, 1))
        continuum = np.repeat(continuum, d.shape[1], axis=1)
        continuum = np.repeat(continuum, d.shape[2], axis=2)
        d -= continuum
        del continuum

        # Save the data-cube with the continuum subtracted
        pyfits.writeto(os.path.join(path,
                                    filename.replace('.fits', '.no_cont.fits')),
                       d, h, clobber=True)

        # Adjust each pixel to a gaussian
        flux = np.zeros_like(snr) - np.inf
        velocity = np.zeros_like(snr) - np.inf
        width = np.zeros_like(snr) - np.inf
        continuum = np.zeros_like(snr) - np.inf
        niter = np.zeros_like(snr) - np.inf
        fit_gauss_cube = np.zeros_like(d)

        for (j, i) in itertools.product(range(d.shape[1]), range(d.shape[2])):

            if snr_mask[j, i]:
                p, s = self.fit_gaussian(w, d[:,j,i])
            else:
                p, s = [-np.inf, -np.inf, -np.inf, -np.inf], -1

            flux[j, i] = p[0]
            velocity[j, i] = p[1]
            width[j, i] = p[2]
            continuum[j, i] = p[3]
            niter[j,i] = s

            fit_gauss_cube[:, j, i] = self.gaussian(p, w)

            log.debug("%04d %04d" % (j, i))

        mask = np.ma.masked_equal(snr_mask, False)

        pyfits.writeto(os.path.join(path,
                                    filename.replace('.fits', '.GAUSS.fits')),
                       fit_gauss_cube, h, clobber=True)

        if show:

            fig1 = plt.figure(figsize=(16,6))
            plt.title('Final Results')
            gs = GridSpec(2, 3)

            magma = plt.get_cmap('magma')
            magma.set_bad('w', 1.0)
            ax1 = plt.subplot(gs[0])
            ax1.set_title('Collapsed cube')
            im1 = ax1.imshow(np.ma.masked_where(~snr_mask, d.sum(axis=0)),
                             cmap=magma, interpolation='nearest',
                             origin='lower')

            divider1 = make_axes_locatable(ax1)
            cax1 = divider1.append_axes("right", size="5%", pad=0.05)
            cbar1 = plt.colorbar(mappable=im1, cax=cax1, use_gridspec=True,
                                 orientation='vertical')

            viridis = plt.get_cmap('viridis')
            viridis.set_bad('w', 1.0)
            ax2 = plt.subplot(gs[1])
            ax2.set_title('Fit n-iteractions')
            im2 = ax2.imshow(np.ma.masked_where(~snr_mask, niter),
                             cmap=viridis, interpolation='nearest',
                             origin='lower')

            divider2 = make_axes_locatable(ax2)
            cax2 = divider2.append_axes("right", size="5%", pad=0.05)
            cbar2 = plt.colorbar(mappable=im2, cax=cax2, use_gridspec=True,
                                 orientation='vertical')

            ax3 = plt.subplot(gs[3])
            ax3.set_title('Flux')

            divider3 = make_axes_locatable(ax3)
            cax3 = divider3.append_axes("right", size="5%", pad=0.05)
            im3 = ax3.imshow(flux * mask, cmap=viridis,
                             interpolation='nearest', origin='lower')

            cbar3 = plt.colorbar(mappable=im3, cax=cax3, use_gridspec=True,
                                  orientation='vertical')

            RdYlBu = plt.get_cmap('RdYlBu')
            RdYlBu.set_bad('w', 1.0)

            ax4 = plt.subplot(gs[4])
            ax4.set_title('Center')

            vmin = np.median(velocity * mask) - 2 * np.std(velocity * mask)
            vmax = np.median(velocity * mask) + 2 * np.std(velocity * mask)
            im4 = ax4.imshow(velocity * mask, cmap=RdYlBu,
                             interpolation='nearest', origin='lower',
                             vmin=vmin, vmax=vmax)

            divider4 = make_axes_locatable(ax4)
            cax4 = divider4.append_axes("right", size="5%", pad=0.05)
            cbar4 = plt.colorbar(mappable=im4, cax=cax4, use_gridspec=True,
                                 orientation='vertical')

            ax5 = plt.subplot(gs[5])
            ax5.set_title('Width')

            vmin = np.median(width * mask) - 2 * np.std(width * mask)
            vmax = np.median(width * mask) + 2 * np.std(width * mask)
            im5 = ax5.imshow(width * mask, cmap=viridis,
                             interpolation='nearest', origin='lower')

            divider5 = make_axes_locatable(ax5)
            cax5 = divider5.append_axes("right", size="5%", pad=0.05)
            cbar5 = plt.colorbar(mappable=im5, cax=cax5, use_gridspec=True,
                                 orientation='vertical')


            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            plt.tight_layout()
            plt.show()


        del h['CRVAL3']
        del h['CDELT3']
        del h['CRPIX3']
        del h['CTYPE3']
        del h['CUNIT3']
        del h['C3_3']
        del h['CD3_3']
        
        pyfits.writeto(
            os.path.join(path, filename.replace('.fits', '.flux.fits')),
            flux, h, clobber=True)

        pyfits.writeto(
            os.path.join(path, filename.replace('.fits', '.velo.fits')),
            velocity, h, clobber=True)

        pyfits.writeto(
            os.path.join(path, filename.replace('.fits', '.width.fits')),
            width, h, clobber=True)

        pyfits.writeto(
            os.path.join(path, filename.replace('.fits', '.cont.fits')),
            continuum, h, clobber=True)

        return
示例#23
0
    def setup_settings(self):
        setting_fig = plt.figure("Settings")
        grid = GridSpec(12, 3, setting_fig)

        textbox_ax = plt.subplot(grid[0, 1:])
        self.create_text_box(textbox_ax, "Min Ingot Width",
                             lambda: self.width[0], self.set_min_width)

        textbox_ax = plt.subplot(grid[1, 1:])
        self.create_text_box(textbox_ax, "Max Ingot Width",
                             lambda: self.width[1], self.set_max_width)

        textbox_ax = plt.subplot(grid[2, 1:])
        self.create_text_box(textbox_ax, "Min Ingot Height",
                             lambda: self.height[0], self.set_min_height)

        textbox_ax = plt.subplot(grid[3, 1:])
        self.create_text_box(textbox_ax, "Max Ingot Height",
                             lambda: self.height[1], self.set_max_height)

        textbox_ax = plt.subplot(grid[4, 1:])
        self.create_text_box(textbox_ax,
                             "Number of shelves",
                             lambda: self.number_of_shelves,
                             self.set_number_of_shelves,
                             data_type=int)

        textbox_ax = plt.subplot(grid[5, 1:])
        self.create_text_box(textbox_ax, "Shelve width",
                             lambda: self.shelve_spec[0],
                             self.set_shelve_width)

        textbox_ax = plt.subplot(grid[6, 1:])
        self.create_text_box(textbox_ax, "Shelve height",
                             lambda: self.shelve_spec[1],
                             self.set_shelve_height)

        textbox_ax = plt.subplot(grid[7, 1:])
        self.create_text_box(textbox_ax,
                             "Number of ingots",
                             lambda: self.number_of_ingot,
                             self.set_number_of_ingots,
                             data_type=int)

        textbox_ax = plt.subplot(grid[8, 1:])
        self.create_text_box(textbox_ax, "Air Gap Width",
                             lambda: self.air_gap_width,
                             self.set_air_gap_width)

        valid_algorithms = list(Viewer.valid_stacking_algorithms.keys())
        stacking_algorithm_ax = plt.subplot(grid[9, :])
        radio_buttons = MyRadioButtons(stacking_algorithm_ax,
                                       valid_algorithms,
                                       orientation="horizontal")
        index = valid_algorithms.index(self.stacking_algorithm)
        radio_buttons.set_active(index)
        radio_buttons.on_clicked(self.set_stacking_algorithm)
        self.setting_widgets.append(radio_buttons)

        # TODO fix checkbox scaling
        show_animation_ax = plt.subplot(grid[10, 1])
        check = CheckButtons(show_animation_ax, ['Show Animation'],
                             [self.show_animation])
        check.on_clicked(self.set_show_animation)
        self.setting_widgets.append(check)

        random_ax = plt.subplot(grid[-1, 0])
        random_button = Button(random_ax, "Randomize")
        random_button.on_clicked(self.randomize)
        self.setting_widgets.append(random_button)

        apply_ax = plt.subplot(grid[-1, 1])
        apply_button = Button(apply_ax, "Apply/Reset")
        apply_button.on_clicked(self.apply)
        self.setting_widgets.append(apply_button)

        run_ax = plt.subplot(grid[-1, 2])
        run_button = Button(run_ax, "Run")
        run_button.on_clicked(self.run)
        self.setting_widgets.append(run_button)

        grid.tight_layout(setting_fig, h_pad=.1)
示例#24
0
def plot_indiv_pdfs(pdf1d_file, pdf2d_file, starnum):
    """
    Make a triangle/corner plot with the 1D and 2D PDFs of a star

    Parameters
    ----------
    pdf1d_file : str
        path+file for the BEAST 1D PDFs

    pdf2d_file : list of strings
        path+file for the BEAST 2D PDFs

    starnum : int
        the index of the star to plot

    """

    with fits.open(pdf2d_file) as hdu_2d, fits.open(pdf1d_file) as hdu_1d:

        # start with the 2D PDF file to figure out which parameters to plot

        # list of extension names
        # - skip the extension named "PRIMARY"
        # - skip any extension with a dimension of 1 (means that param wasn't fit)
        ext_list = [
            hdu_2d[i].name for i in range(len(hdu_2d))
            if ("PRIMARY" not in hdu_2d[i].name) and (
                1 not in hdu_2d[i].data.shape)
        ]

        # grab the parameter names
        param_list_temp = [i for x in ext_list for i in x.split("+")]

        # put them in the order we want
        _plot_order = ["M_ini", "logA", "distance", "Z", "Av", "Rv", "f_A"]
        param_list = [p for p in _plot_order if p in param_list_temp]
        # if there are parameters not in the predetermined plot order, append them
        for p in param_list_temp:
            if p not in param_list:
                param_list.append(p)
        # total number of parameters
        n_params = len(param_list)

        # figure
        fig = plt.figure(figsize=(4 * n_params, 4 * n_params))

        # label font sizes
        label_font = 25
        tick_font = 22

        # iterate through the panels
        for i, pi in enumerate(param_list):
            for j, pj in enumerate(param_list[i:], i):

                # print('plotting {0} and {1}'.format(pi, pj))

                # not along diagonal
                if i != j:

                    # set up subplot
                    plt.subplot(n_params, n_params, i + j * (n_params) + 1)
                    ax = plt.gca()

                    # find the 2D PDF and make sure it's properly rotated
                    try:
                        image = hdu_2d[pi + "+" + pj].data[starnum, :, :].T
                    except KeyError:
                        image = hdu_2d[pj + "+" + pi].data[starnum, :, :]
                    except Exception:
                        raise

                    # create axis/labels
                    x_bins, x_label = setup_axis(pi, hdu_1d)
                    y_bins, y_label = setup_axis(pj, hdu_1d)

                    # plot 2D PDF image
                    im = plt.imshow(
                        np.log(image / np.max(image)),
                        extent=(
                            np.min(x_bins),
                            np.max(x_bins),
                            np.min(y_bins),
                            np.max(y_bins),
                        ),
                        cmap="magma",
                        vmin=-10,
                        vmax=0,
                        aspect="auto",
                        origin="lower",
                    )

                    # attempt to plot 1/2/3 sigma contours
                    # (doesn't work if the probability is super concentrated,
                    # which is generally due to the grid being really coarse)
                    try:
                        im_sort = np.sort(image, axis=None)[::-1]
                        cumsum = np.cumsum(im_sort)
                        cumsum /= np.max(cumsum)
                        clevels = [
                            np.log(im_sort[np.where(cumsum <= p)[0][-1]])
                            for p in [0.68, 0.95, 0.997]
                        ]
                        plt.contour(
                            x_bins,
                            y_bins,
                            image,
                            levels=clevels,
                            colors="k",
                            linestyles="-",
                        )
                    except IndexError:
                        # print("  can't make contours for this")
                        pass
                    except ValueError:
                        pass
                    except Exception:
                        raise

                    ax.tick_params(
                        axis="both",
                        which="both",
                        direction="in",
                        labelsize=tick_font,
                        bottom=True,
                        top=True,
                        left=True,
                        right=True,
                    )

                    # axis labels and ticks
                    if i == 0:
                        ax.set_ylabel(y_label, fontsize=label_font)
                        # ax.get_yaxis().set_label_coords(-0.35,0.5)
                    else:
                        ax.set_yticklabels([])
                    if j == n_params - 1:
                        ax.set_xlabel(x_label, fontsize=label_font)
                        plt.xticks(rotation=-45)
                    else:
                        ax.set_xticklabels([])

                # along diagonal
                if i == j:

                    # set up subplot
                    plt.subplot(n_params, n_params, i + j * (n_params) + 1)
                    ax = plt.gca()

                    # create axis/labels
                    x_bins, x_label = setup_axis(pi, hdu_1d)

                    # make histogram
                    _pdf = hdu_1d[pi].data[starnum, :]
                    plt.plot(
                        x_bins,
                        _pdf / np.max(_pdf),
                        marker="o",
                        mew=0,
                        color="black",
                        markersize=2,
                        linestyle="-",
                    )

                    # axis ranges
                    plt.xlim(np.min(x_bins), np.max(x_bins))
                    plt.ylim(0, 1.05)

                    ax.tick_params(axis="y",
                                   which="both",
                                   length=0,
                                   labelsize=tick_font)
                    ax.tick_params(axis="x",
                                   which="both",
                                   direction="in",
                                   labelsize=tick_font)

                    # axis labels and ticks
                    ax.set_yticklabels([])
                    if i < n_params - 1:
                        ax.set_xticklabels([])
                    if i == n_params - 1:
                        ax.set_xlabel(x_label, fontsize=label_font)
                        plt.xticks(rotation=-45)

    # plt.subplots_adjust(wspace=0.05, hspace=0.05)
    plt.tight_layout()

    # add a colorbar
    gs = GridSpec(nrows=20, ncols=n_params)
    cax = fig.add_subplot(gs[0, 2:])
    cbar = plt.colorbar(im, cax=cax, orientation="horizontal")
    cbar.set_label("Log Likelihood", fontsize=label_font)
    cbar.ax.tick_params(labelsize=tick_font)
    gs.tight_layout(fig)

    fig.savefig(
        pdf1d_file.replace("pdf1d.fits",
                           "pdfs_starnum_{0}.pdf".format(starnum)))
    plt.close(fig)
示例#25
0
    def calculateDistance(self):
        """
        TMP gets distance to ngc from pleiedes
        """
        pleiades = np.genfromtxt(
            "/home/conor/scripts/StarBug/catalogs/pleiades_sloane")
        pleiades = pleiades[np.where(pleiades[:, 0] < 15)]
        pleiades = pleiades[np.where(pleiades[:, 1] < 0.3)]
        #pleiades = pleiades[np.where( pleiades[:,1] >-0.7)]
        pli_distance = 134
        #pli_distance = 2327#NOT PLI

        ig = 0
        igr = 1
        iug = 2

        fig = plt.figure()
        gs = GridSpec(5, 2)
        ax0 = plt.subplot(gs[0:3, :])
        ax0.scatter(pleiades[:, 1], pleiades[:, ig], c='k', marker='*')
        for s in self.sourcelist:
            s.construct_colours([2, 0], [0, 1])
            if (s.colours[1] > 0.25 or s.colours[1] < -0.6):
                s.colours[1] = np.nan
            ax0.scatter(s.colours[1], s.MAG[0], c='b', marker='*')

        plt.gca().invert_yaxis()
        ax2 = plt.subplot(gs[3:, :], sharex=ax0)

        colourmin = np.nanmin(pleiades[:, 1])
        colourmax = np.nanmax(pleiades[:, 1])
        sourceG_R = []
        sourceG = []
        sourcedG = []

        for s in self.sourcelist:
            c = s.colours[1]
            if (np.isfinite(c)):
                sourceG_R.append(c)
                sourceG.append(s.MAG[0])
                sourcedG.append(s.MAGERR[0])
                if c < colourmin: colourmin = c
                if c > colourmax: colourmax = c
        Range = np.linspace(colourmin, colourmax, 50)
        sourceG = np.array(sourceG)
        sourcedG = np.array(sourcedG)
        dm = []
        ddm = []
        colour = []
        for i in range(len(Range[:-1])):
            c0 = Range[i]
            c1 = Range[i + 1]
            pliMask = (pleiades[:, 1] >= c0) * (pleiades[:, 1] < c1)
            pliMean = np.mean(pleiades[:, ig][pliMask])

            catMask = (sourceG_R >= c0) * (sourceG_R < c1)
            catMean = np.nanmean(sourceG[catMask])
            if (np.isfinite(catMean) and np.isfinite(pliMean)):
                pliErr = np.std(pleiades[:, ig][pliMask])
                catErr = np.sqrt(
                    sum([(em / len(sourcedG[catMask]))**2.
                         for em in sourcedG[catMask]]))
                if (pliErr < 1 and catErr < 1 and Range[i] < 0.17):
                    dm.append(pliMean - catMean)
                    colour.append(Range[i])
                    ddm.append(np.sqrt(pliErr**2. + catErr**2.))
                ax0.scatter(c0, catMean, c='r', marker='x')
                #ax0.scatter(c0, pliMean, c='r', marker='x')

        deltaM = np.nanmean(dm)
        deltaMerr = np.sqrt(np.nansum([(x / len(dm))**2. for x in ddm]))
        Dn = pli_distance * 10.0**(-deltaM / 5.)
        dDn = np.sqrt(
            (((-pli_distance * np.log(10) / 5.) * 10.0**(-deltaM / 5.)) *
             deltaMerr)**2.0)
        print(Dn, dDn)
        print("Distance Modulus: %f" % (-5.0 * np.log10(Dn / 10.0)))

        ax2.scatter(colour, dm, s=5, c='k')
        ax2.errorbar(colour, dm, yerr=ddm, linewidth=0, elinewidth=1, c='k')
        ax0.tick_params(direction='in', labelbottom=False)
        ax2.tick_params(direction='in')
        #ax2.axhline(deltaM, c='xkcd:magenta')
        ax2.axhline(deltaM + deltaMerr, c='xkcd:magenta')
        ax2.axhline(deltaM - deltaMerr, c='xkcd:magenta')

        ax2.set_xlabel(r'$(g-r)_0$')
        ax2.set_ylabel(r'$\Delta$M')
        ax0.set_ylabel(r'$g_0$')

        gs.tight_layout(fig)

        for s in self.sourcelist:
            s.set_distance(Dn, dDn)
            s._voidCalcAbsoluteMagnitudes()
        #plt.show()
        fig.savefig('out/%s_distance.png' % self.name)
示例#26
0
     for j in range(ncols):
         k = i * ncols + j
         if i == 0 and j == 0:
             maps_ax[i, j] = fig.add_subplot(gs2[1 + i, j],
                                             projection=wcs[k])
         else:
             maps_ax[i, j] = fig.add_subplot(gs2[1 + i, j],
                                             sharex=maps_ax[0, 0],
                                             sharey=maps_ax[0, 0],
                                             projection=wcs[k])
 plot_stat(stat_ax)
 plot_maps(maps_ax)
 xlocs = [145.115, 148.155, 163.355, 178.555, 187.675, 193.755]
 ylocs = np.ones_like(xlocs) * 2.0
 label_plots(xlocs, ylocs)
 # fig.text(0.01, (1-1./(nrows+1))*1.2, ylabels[stat],
 #          rotation='vertical', verticalalignment='center')
 # fig.text(0.5, 0.01, 'Right Ascension [$^{\circ}$]',
 #          horizontalalignment='center')
 fig.text(0.01,
          1. / (nrows + 1),
          'Declination [$^{\circ}$]',
          rotation='vertical',
          verticalalignment='center')
 stat_ax.set_ylabel(ylabels[stat])
 maps_ax[1, 1].set_xlabel('Right Ascension [$^{\circ}$]')
 # maps_ax[0, 0].set_ylabel('Declination [$^{\circ}$]')
 gs0.tight_layout(fig, rect=[-0.02, 0.05, 1, 1])
 # plt.tight_layout()
 # plt.show()
 plt.savefig('kurt_maps_hera331_bw3MHz.pdf', dpi=200)
示例#27
0
文件: vmap_calc.py 项目: b1quint/btfi
    def fit_continuum(self, data):
        """
        Use the data and the mask to estimate and fit the continuum levels.

        :param collapsed_data: data-cube in 3D array.
        :return: array containing the fitted polynomium.
        """
        collapsed_data = np.mean(data, axis=0)
        norm = ImageNormalize(vmin=collapsed_data.min(), vmax=collapsed_data.max(), stretch=LogStretch())

        fig = plt.figure(figsize=(8, 6))
        fig.suptitle('Draw a rectangle using the mouse. \nPress <ENTER> to ' +
                      'accept it and carry on or "Q" to leave.')

        gs = GridSpec(3, 3, height_ratios=[1, 12, 3], width_ratios=[1, 10, 1])
        ax1 = plt.subplot(gs[4])
        im1 = ax1.imshow(collapsed_data, origin='lower', interpolation='nearest',
                         cmap='hot_r', norm=norm)
        ax1.grid()

        self.ax2 = plt.subplot(gs[7])
        self.ax2.xaxis.set_ticklabels([])
        self.ax2.yaxis.set_ticklabels([])

        self.RS = MyRectangleSelector(ax1, self.line_select_callback, drawtype='box',
                                 useblit=True, button=[1], minspanx=5,
                                 minspany=5, spancoords='pixels',
                                 rectprops = dict(facecolor='green',
                                                  edgecolor = 'green',
                                                  alpha=0.5, fill=True))


        self.RS.set_active(True)
        self.RS.connect_event('button_press_event', self.on_mouse_click)
        self.RS.connect_event('button_release_event', lambda e: self.on_mouse_release(e, data))
        self.RS.connect_event('key_press_event', self.on_key_press)

        gs.tight_layout(fig)
        plt.show()

        x1 = min(self.x1, self.x2)
        x2 = max(self.x1, self.x2)
        y1 = min(self.y1, self.y2)
        y2 = max(self.y1, self.y2)

        if x1 == x2:
            log.warning('x1 and x2 are the same. Using the whole image width.')
            x1 = 0
            x2 = -1

        if y1 == y2:
            log.warning('y1 and y2 are the same. Using the whole image height.')
            y1 = 0
            y2 = -1

        data = data[:, y1:y2, x1:x2]
        data = data.mean(axis=1)
        data = data.mean(axis=1)
        median, std = np.median(data), np.std(data)
        c = np.where(np.abs(data - median) < std, True, False)
        x = np.arange(data.size)
        p = np.polyfit(x[c], data[c], 3)
        y = np.polyval(p, x)

        return y
示例#28
0
    def __init__(self,
                 nodes=50,
                 coupling_network=nx.complete_graph,
                 distribution=np.random.standard_normal,
                 timesteps=200,
                 t_end=None,
                 symmetric=False,
                 interval=25,
                 **osc_params):
        """
        :param nodes: The number of oscillators to simulate (default 50)
        :param coupling_network: Networkx graph construction function
        representing the coupling topology (default is nx.complete_graph). The
        function should take a single argument, the number of nodes, and return
        a graph.
        :param distribution: Function to generate the frequency distribution.
        It should take an single argument, the number of nodes, and return a
        numpy array containing the frequency   
        :param timesteps:
        :param t_end:
        :param symmetric:
        :param interval:
        :param osc_params:
        """

        self.t_end = t_end
        self.n = nodes
        if symmetric:
            freq = list(distribution(int(nodes / 2)))
            freq += [-f for f in freq]
            if nodes % 2 == 1:
                freq.append(0)
            self.omega = np.array(sorted(freq))
        else:
            self.omega = np.array(sorted(distribution(int(nodes))))
        self.graph = coupling_network(nodes)
        if t_end:
            self.t = np.linspace(0, t_end, timesteps).T
            self.z = np.zeros((nodes, timesteps), dtype=np.complex)
        else:
            self.z = np.zeros((nodes, 1), dtype=np.complex)

        self.z[:, 0] = np.random.uniform(low=-1, high=1, size=self.z[:,
                                                              0].shape) + 1j * np.random.uniform(
            low=-1, high=1, size=self.z[:, 0].shape)
        if t_end:
            self._solve_ode(**osc_params)

        max_z = max(min(abs(self.z).max(), 5), 1)
        #max_z = 2
        fig = plt.figure()
        gs = GridSpec(2, 5)
        self.ax_phase = plt.subplot(gs[0, :3])
        self.ax_complex = plt.subplot(gs[0, 3:])
        self.ax_r = plt.subplot(gs[1, :])
        self._init_phase_axis()
        self._init_complex_plane(extent=max_z)
        if not t_end:
            self.t_max = 50
        else:
            self.t_max = t_end
        self.t_max_step = 25

        self._init_r_axis(t_max=self.t_max, r_max=max_z)

        gs.tight_layout(fig)

        self.o_line = Line2D([], [], color='none', marker='.',
                             markerfacecolor='r')
        self.ax_phase.add_line(self.o_line)
        self.c_line = Line2D([], [], color='none', marker='.',
                             markerfacecolor='r')
        self.cz_line = Line2D([], [], color='none', marker='o',
                              markeredgecolor='b')
        self.ax_complex.add_line(self.c_line)
        self.ax_complex.add_line(self.cz_line)

        self.r_line = Line2D([], [], color='red')
        self.ax_r.add_line(self.r_line)

        self._sn = 1./np.sqrt(nodes)
        if t_end:
            self.rn_line = Line2D([0, t_end],[self._sn, self._sn], linestyle=':')
        else:
            self.rn_line = Line2D([0, self.t_max], [self._sn, self._sn],
                                  linestyle=':')
        self._running = False
        self.ax_r.add_line(self.rn_line)
        self._gen_args = osc_params
        self._timestep = 2 * interval / 1000.0
        animation.TimedAnimation.__init__(self, fig, interval=interval, blit=True)
def make_evaluation_plots_from_data(
        data: Sequence[ExperimentResult],
        exp_name: str,
        param_labels: Sequence[str],
        bar_plot_xlabel: str,
        fig_save_path: Path = Path('../results/plots'),
        sim_non_cli_opts: Optional[PandemicSimNonCLIOpts] = None,
        max_hospital_capacities: Optional[List[int]] = None,
        show_summary_plots: bool = True,
        show_cumulative_reward: bool = False,
        show_time_to_peak: bool = True,
        show_pandemic_duration: bool = True,
        show_stage_trials: bool = False,
        annotate_stages: Union[bool, Sequence[bool]] = False,
        figsize: Optional[Tuple[int, int]] = None):
    n_params = len(param_labels)
    os.makedirs(str(fig_save_path.absolute()), exist_ok=True)
    annotate_stages = [annotate_stages] * n_params if isinstance(
        annotate_stages, bool) else annotate_stages

    sim_non_cli_opts = sim_non_cli_opts or PandemicSimNonCLIOpts(
        small_town_population_params)
    hp = sim_non_cli_opts.population_params.location_type_to_params[Hospital]
    max_hospital_capacities = ([hp.num * hp.visitor_capacity] *
                               len(data) if max_hospital_capacities is None
                               else max_hospital_capacities)
    gis_legend = [summ.value for summ in sorted_infection_summary]

    sup_title = f"{' '.join([s.capitalize() for s in exp_name.split(sep='_')])}"

    plot_ref_labels = string.ascii_lowercase + string.ascii_uppercase
    plot_ref_label_i = 0

    gs1: Optional[GridSpec] = None
    if show_summary_plots:
        figsize = figsize if figsize is not None else ((
            16, 6) if n_params <= 5 else (20, 12))
        fig = plt.figure(num=sup_title, figsize=figsize)
        gs1 = GridSpec(n_params, 3)
        axs = np.array([fig.add_subplot(sp)
                        for sp in gs1]).reshape(n_params, 3)
        for i, (exp_result, param_label, max_hospital_capacity,
                ann_stages) in enumerate(
                    zip(data, param_labels, max_hospital_capacities,
                        annotate_stages)):

            plot_global_infection_summary(exp_result,
                                          ax=axs[i, 0],
                                          annotate_stages=ann_stages)
            if show_stage_trials:
                seed_indices = np.random.permutation(
                    len(exp_result.obs_trajectories.stage.shape[1]))[:3]
                for seed_i in seed_indices:
                    axs[i, 2].plot(exp_result.obs_trajectories.stage[:, seed_i,
                                                                     0])
                axs[i, 2].set_title(
                    f'Stages over Time\n(shown for {len(seed_indices)} trials)'
                )
                axs[i, 2].set_yticks(
                    [0, np.max(exp_result.obs_trajectories.stage)])
                axs[i, 2].set_yticklabels([
                    'Open\n(Stage-0)',
                    f'Lockdown\n(Stage-{int(np.max(exp_result.obs_trajectories.stage))})'
                ])
                axs[i, 2].set_xlabel('time (days)')
            else:
                plot_global_infection_summary(exp_result,
                                              testing_summary=True,
                                              annotate_stages=ann_stages,
                                              ax=axs[i, 1])

            plot_critical_summary(exp_result,
                                  max_hospitals_capacity=max_hospital_capacity,
                                  annotate_stages=ann_stages,
                                  ax=axs[i,
                                         1] if show_stage_trials else axs[i,
                                                                          2])

            for j, ax in enumerate(axs[i]):
                ref_label_offset = 20
                ax.yaxis.tick_right()
                ax.yaxis.set_label_position("right")
                ax.set_ylabel(ax.get_ylabel(), rotation=-90, labelpad=10)
                if i < (axs.shape[0] - 1):
                    ax.set_xlabel('')
                    ref_label_offset = 0
                if j < (axs.shape[1] - 1):
                    ax.set_ylabel('')
                if i > 0:
                    ax.set_title('')

                axs[i, j].annotate(f'({plot_ref_labels[plot_ref_label_i]})',
                                   (0.5, 0.),
                                   xytext=(0, -25 - ref_label_offset),
                                   textcoords='offset points',
                                   xycoords='axes fraction',
                                   ha='center',
                                   va='center',
                                   size=14)
                plot_ref_label_i += 1

            axs[i, 0].annotate(f'{param_label}', (0, 0.5),
                               xytext=(-15, 0),
                               textcoords='offset points',
                               xycoords='axes fraction',
                               ha='center',
                               va='center',
                               size=14,
                               rotation=90)

        handles = (axs[0, 0].get_legend_handles_labels()[0] +
                   axs[0, 2].get_legend_handles_labels()[0][-1:])
        axs[0, 0].legend(handles,
                         gis_legend +
                         ['Max hospital capacity', 'cumulative_reward'],
                         fancybox=True,
                         loc='best',
                         fontsize=4 if n_params > 3 else 6)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", UserWarning)
            # This raises warnings since tight layout cannot
            # handle gridspec automatically. We are going to
            # do that manually so we can filter the warning.
            gs1.tight_layout(fig, rect=[0.01, None, 0.6, None])
    else:
        figsize = figsize if figsize is not None else (10, 3)
        fig = plt.figure(num=sup_title, figsize=figsize)

    bar_plots_2d = (3 + int(show_time_to_peak) + int(show_pandemic_duration) +
                    int(show_cumulative_reward))
    bar_plots_3d = 0
    total_bar_plots = bar_plots_2d + bar_plots_3d
    n_cols = int(np.round(np.sqrt(total_bar_plots)))
    n_rows = int(n_cols) if n_cols**2 >= total_bar_plots else n_cols + 1
    gs2 = gridspec.GridSpec(n_rows, n_cols)
    axs = []
    plot_i = 0
    for sp in gs2:
        if plot_i < bar_plots_2d:
            axs.append(fig.add_subplot(sp))
        elif plot_i < (bar_plots_2d + bar_plots_3d):
            axs.append(fig.add_subplot(sp, projection='3d'))
        plot_i += 1

    plot_multi_params_summary(
        data,
        param_labels=param_labels,
        xlabel=bar_plot_xlabel,
        max_hospitals_capacities=max_hospital_capacities,
        show_cumulative_reward_plot=show_cumulative_reward,
        show_time_to_peak=show_time_to_peak,
        show_pandemic_duration=show_pandemic_duration,
        axs=axs)

    for ax in axs:
        if ax.axison or isinstance(ax, Axes3D):
            offset = 20 if max([len(label)
                                for label in param_labels]) < 5 else 30
            ax.annotate(f'({plot_ref_labels[plot_ref_label_i]})', (0.5, 0.),
                        xytext=(0, -25 - offset),
                        textcoords='offset points',
                        xycoords='axes fraction',
                        ha='center',
                        va='center',
                        size=14)
            plot_ref_label_i += 1

    if gs1:
        with warnings.catch_warnings():
            # This raises warnings since tight layout cannot
            # handle gridspec automatically. We are going to
            # do that manually so we can filter the warning.
            warnings.simplefilter("ignore", UserWarning)
            gs2.tight_layout(fig, rect=[0.6, None, None, None])

        top = min(gs1.top, gs2.top)
        bottom = max(gs1.bottom, gs2.bottom)

        gs1.update(top=top, bottom=bottom)
        gs2.update(top=top, bottom=bottom)
        plt.annotate(bar_plot_xlabel, (0.01, 0.5),
                     xytext=(0, 0),
                     textcoords='offset points',
                     xycoords='figure fraction',
                     ha='center',
                     va='center',
                     size=16,
                     rotation=90)
    else:
        plt.tight_layout()

    plt.savefig(fig_save_path / (exp_name + '.pdf'))
示例#30
0
def mountains_series():
    def format_axes(fig):
        for i, ax in enumerate(fig.axes):
            ax.tick_params(labelbottom=False,
                           labelleft=False,
                           bottom=False,
                           left=False)

    fig = plt.figure(constrained_layout=False, frameon=False)
    ax = fig.add_axes([0, 0, 1, 1])
    ax.set_facecolor((0.88, 0.87, 0.9))

    gs = GridSpec(3, 3, figure=fig, wspace=0, hspace=0.05)
    axes = []
    axes.append(fig.add_subplot(gs[0, :]))
    axes.append(fig.add_subplot(gs[1, :-1]))
    axes.append(fig.add_subplot(gs[1:, -1]))
    axes.append(fig.add_subplot(gs[-1, 0]))
    axes.append(fig.add_subplot(gs[-1, -2]))
    # sizes_y = [15, 10, 5, 5, 5]
    # sizes_x = [5, 5, 10, 5, 5]

    sizes_y = [20, 12, 5, 5, 5]
    sizes_x = [5, 5, 10, 5, 5]

    for i in range(5):
        debug = False
        rand_color = randomcolor.RandomColor()

        size_x = sizes_x[i]
        size_y = sizes_y[i]
        upscale_factor = 10
        n_labels = 5
        sigma = 1
        buffer = 0.005
        hsv_index = 1
        segment_spacing = [10, 10]
        image_rgb = np.random.uniform(0, 1, (size_x, size_y, 3))
        labels = np.random.randint(n_labels + 1, size=(
            size_x, size_y)) * np.random.randint(0, 2, size=(size_x, size_y))

        # segment random image
        segments = random_walker(
            image_rgb,
            labels,
            multichannel=True,
            beta=250,
            copy=False,
            spacing=segment_spacing,
        )

        all_colors = np.array(
            rand_color.generate(
                hue="purple",
                # luminosity='bright',
                count=n_labels,
                format_='Array_rgb')) / 256.

        for color_index in np.unique(segments):
            color_hsv = color.rgb2hsv(all_colors[color_index - 1])
            # color_hsv[2] = 0.6 + (color_index - 1) * 0.4 / n_labels
            color_rgb = color.hsv2rgb(color_hsv)
            image_rgb[segments == color_index] = color_rgb

        # transform segmented image so it is large, preserving blobs, and blurry
        image_rgb = rescale(image_rgb,
                            upscale_factor,
                            anti_aliasing=False,
                            multichannel=True)
        image_rgb = gaussian(image_rgb, sigma=sigma, multichannel=True)
        image_hsv = color.rgb2hsv(image_rgb)
        if debug:
            plt.figure()
            plt.imshow(image_rgb)
            plt.show()

        for pix_frac in [0.9]:
            total_pixels_switched = int(image_rgb.shape[0] *
                                        image_rgb.shape[0] * pix_frac)
            print(total_pixels_switched)
            for _ in range(total_pixels_switched):
                rand_x, rand_y = np.random.choice(
                    image_hsv.shape[0]), np.random.choice(image_hsv.shape[1])
                orig_rgb = image_rgb[rand_x, rand_y]
                rand_value = image_hsv[rand_x, rand_y, hsv_index]

                x, y = np.where(
                    (rand_value *
                     (1 + 0.5 * buffer) >= image_hsv[:, :, hsv_index])
                    & (rand_value *
                       (1 - 2 * buffer) < image_hsv[:, :, hsv_index]))
                if len(x) == 0:
                    continue
                idx = np.random.choice(len(x))
                update_rgb = image_rgb[x[idx], y[idx]]

                image_rgb[x[idx], y[idx]] = orig_rgb
                image_rgb[rand_x, rand_y] = update_rgb

            if debug:
                plt.figure()
                plt.title(pix_frac)
                plt.imshow(image_rgb)
                plt.show()

        if debug:
            plt.figure()
            plt.imshow(image_rgb)
            plt.show()

        # filtered_img = prewitt_v(color.rgb2hsv(image_rgb)[:, :, 0])
        # filtered_img = meijering(color.rgb2hsv(image_rgb)[:, :, 0])
        # filtered_img = sato(color.rgb2hsv(image_rgb)[:, :, 0])

        # filtered_details = frangi(color.rgb2hsv(image_rgb)[:, :, 0],
        #                       sigmas=range(3, 8, 10),
        #                       black_ridges=True,
        #                       beta=0.1,
        #                       )

        filtered_img = frangi(
            color.rgb2hsv(image_rgb)[:, :, 0],
            sigmas=range(3, 8, 10),
            black_ridges=True,
            # beta=0.1,
        )

        from skimage.filters.rank import median
        from skimage.morphology import disk, ball

        filtered_img = median(filtered_img / np.max(filtered_img), disk(10))

        filtered_img = filtered_img
        filtered_img = 1.5 * (filtered_img + np.abs(
            np.min(filtered_img))) / np.max(filtered_img +
                                            np.abs(np.min(filtered_img)))
        filtered_img += 0.6

        if debug:
            plt.figure()
            plt.imshow(filtered_img, cmap='gray')
            plt.colorbar()
            plt.show()

        num_erosions = 5
        eroded_image = hessian(color.rgb2hsv(image_rgb)[:, :, 0])
        eroded_aug = np.zeros_like(eroded_image)
        for n in range(num_erosions):
            eroded_aug += 1 * eroded_image
            eroded_image = erosion(eroded_image)

        if debug:
            plt.figure()
            plt.imshow(image_rgb)
            plt.show()

        image_hsv = color.rgb2hsv(image_rgb)
        image_hsv[:, :, 2] *= filtered_img
        image_hsv[:, :, 2] *= 1 - (0.8 * eroded_aug / np.max(eroded_aug))
        image_rgb_shadow_aug = color.hsv2rgb(image_hsv)
        # plt.figure()
        # plt.imshow(image_rgb_shadow_aug)
        # plt.show()
        axes[i].imshow(image_rgb_shadow_aug)
    format_axes(fig)
    gs.tight_layout(fig, pad=1.2, h_pad=0.5)

    plt.show()
示例#31
0
fig = plt.figure(figsize=(8,2.5))
gs1 = GridSpec(1, 4)
p1 = fig.add_subplot(gs1[0])
p2 = fig.add_subplot(gs1[1])
p3 = fig.add_subplot(gs1[2])
p4 = fig.add_subplot(gs1[3])

p1.pie([ss, sd, sh], autopct='%1.1f%%', pctdistance=1.4, colors=["lightgrey", "grey", "darkgrey"])
p1.set_title("Structural")
p1.axis("equal")

p2.pie([bs, bd, bh], autopct='%1.1f%%', pctdistance=1.4,  colors=["lightgrey", "grey", "darkgrey"])
p2.set_title("Behavioural")
p2.axis("equal")

p3.pie([cs, cd, ch], autopct='%1.1f%%', pctdistance=1.4,  colors=["lightgrey", "grey", "darkgrey"])
p3.set_title("Creationnal")
p3.axis("equal")

gs1.tight_layout(fig)


p, _ , _=p4.pie([cs, cd, ch], autopct='%1.1f%%', colors=["lightgrey", "grey", "darkgrey"])

p4.axis("equal")
p4.set_visible(False)
lgd = fig.legend(p, ["Static", "Dynamic", "Hybrid"], loc="right")
fig.savefig("../img/analysis_v_pattern.png")
#plt.savefig("../img/creationnal.png", bbox_extra_artists=(lgd,), bbox_inches='tight')
示例#32
0
def plot_results_year_round_team_color(results, constructors_df, drivers_df,
                                       win_type='race',
                                       result_type='Race Wins'):
    fig = plt.figure(figsize=(8.1, 9))
    gs = GridSpec(1, 3, width_ratios=[1.3, 0.4, 0.4], wspace=0.1)

    team_results = results['team']
    driver_results = results['driver']

    color_names_sq = np.array(
        ['white'] * (constructors_df.index.max() + 1), dtype='U16'
    )
    color_names_sq[constructors_df.index] = constructors_df['parent'].apply(
        lambda t: TEAM_COLORS.get(t, TEAM_COLORS['others'])[0]
    )
    # print(color_names_sq[131])

    cmap_sq = ListedColormap(color_names_sq)

    # Plot
    ax_results = plt.subplot(gs[0])
    # ax_results_right = ax_results.twinx()
    ax_team_legend = plt.subplot(gs[1])
    ax_driver_legend = plt.subplot(gs[2])

    xlims = (0.5, team_results.shape[1] + 0.5)
    ylims = (F1_LATEST_YEAR + 0.5, F1_FIRST_YEAR - 0.5)

    # Races
    handles_team = []
    labels_team = []
    handles_driver = []
    labels_driver = []
    total_races = np.sum(team_results != 0)
    remaining_races = total_races

    ax_results.imshow(
        team_results, cmap=cmap_sq, vmin=0, vmax=constructors_df.index.max(),
        extent=(*xlims, *ylims)
    )

    team_ref_view = constructors_df.set_index('constructorRef')
    driver_ref_view = drivers_df.set_index('driverRef')

    team_n_races = []
    for n, team_id in enumerate(TEAM_COLORS):
        if team_id == 'others':
            name = 'Others'
            team_ids = constructors_df[
                ~constructors_df['parent'].isin(TEAM_COLORS)
            ].index
        else:
            name = team_ref_view.loc[team_id]['name']
            team_ids = constructors_df[constructors_df['parent'] == team_id].index

        race_wins = np.isin(team_results, team_ids)

        wins = np.sum(race_wins[:, :MAX_RACES_YEAR])
        y, x = np.nonzero(race_wins)
        x += 1          # shift round #
        y += 1950       # shift year

        if wins == 0:
            continue

        colors = TEAM_COLORS[team_id]
        if wins == 1:
            wins_label = f'{wins} {win_type}'
        else:
            wins_label = f'{wins} {win_type}s'
        label = f'{name} ({wins_label})'

        team_n_races.append((n, team_id, wins))

        h1, = ax_results.plot(np.nan, 's', ms=7, color=colors[0])
        h2, = ax_results.plot(x, y, 'o', ms=2, color=colors[1])

        handles_team.append((h1, h2))
        labels_team.append(label)

    driver_n_races = []
    for n, driver_ref in enumerate(DRIVER_COLORS):
        name = driver_ref_view.loc[driver_ref]['name']
        driver_ids = drivers_df[drivers_df['driverRef'] == driver_ref].index

        race_wins = np.isin(driver_results, driver_ids)

        wins = np.sum(race_wins[:, :MAX_RACES_YEAR])
        y, x = np.nonzero(race_wins)
        x += 1          # shift round #
        y += 1950       # shift year

        if wins == 0:
            continue

        color = DRIVER_COLORS[driver_ref]
        if wins == 1:
            wins_label = f'{wins} {win_type}'
        else:
            wins_label = f'{wins} {win_type}s'

        first_year = min(y)
        last_year = max(y)

        label = f'{name}\n{first_year}-{last_year}\n({wins_label})'

        driver_n_races.append((n, driver_ref, wins))

        h, = ax_results.plot(x, y, 's', ms=6, color=color,
                             markeredgewidth=1,
                             markerfacecolor='none')

        handles_driver.append(h)
        labels_driver.append(label)

    team_n_races = np.array(team_n_races, dtype=('u4,U16,u4'))
    driver_n_races = np.array(driver_n_races, dtype=('u4,U16,u4'))
    order_team = np.hstack((
        np.argsort(team_n_races[
            ~np.isin(team_n_races['f1'], ['indy500', 'others'])
        ]['f2'])[::-1],
        np.nonzero(team_n_races['f1'] == 'indy500')[0],
        np.nonzero(team_n_races['f1'] == 'others')[0],
    ))
    order_driver = np.argsort(driver_n_races['f2'])[::-1]

    # ax_results.axis('off')
    ax_results.invert_yaxis()

    # ax_results.invert_yaxis()

    ax_results.set_xticks([1] + [i for i in range(5, 21, 5)])
    ax_results.set_yticks(
        [ i for i in range(F1_FIRST_YEAR, F1_LATEST_YEAR, 5)] + [F1_LATEST_YEAR]
    )
    # ax_results_right.set_yticks(
    #     [ i for i in range(F1_FIRST_YEAR, F1_LATEST_YEAR, 5)] + [F1_LATEST_YEAR]
    # )

    ax_results.set_xlim(*xlims)
    ax_results.set_ylim(*ylims)
    # ax_results_right.set_ylim(*ylims)

    ax_results.set_xlabel('Race #')
    ax_results.set_ylabel('Year')
    # ax_results_right.set_ylabel('Year')

    # ax_results.axis('equal')
    # ax_results_right.axis('equal')

    # Champions
    ax_results.axvline(MAX_RACES_YEAR + 1.5, ls='--', color='k')

    last_col = team_results.shape[1]

    def add_line_label(x, y, label, ha='center', va='top', color='black'):
        signal = 1 if va == 'top' else -1

        line = mlines.Line2D(
            [x, x],
            [y + 1 * signal, y + 2 * signal],
            ls='-', color=color
        )
        line.set_clip_on(False)
        ax_results.add_line(line)

        ax_results.text(x, y + 2 * signal, label,
                        ha=ha, va=va, color=color)

    add_line_label(last_col - 4, F1_LATEST_YEAR, 'WCC ',
                   ha='center', va='top', color='cyan')
    add_line_label(last_col - 3, F1_FIRST_YEAR, 'Constructor\nwith most wins',
                   ha='right', va='bottom', color='blue')
    add_line_label(last_col - 1, F1_LATEST_YEAR, ' WDC',
                   ha='center', va='top', color='brown')
    add_line_label(last_col - 0, F1_FIRST_YEAR, 'Driver with\nmost wins',
                   ha='left', va='bottom', color='orange')

    # Team legend
    handles_team = [handles_team[n] for n in order_team]
    labels_team = [labels_team[n] for n in order_team]

    ax_team_legend.legend(handles_team, labels_team, loc='center',
                          facecolor=(.85, .85, .85))
    ax_team_legend.axis('off')

    # Driver legend
    # handles_driver = [handles_driver[n] for n in order_driver]
    # labels_driver = [labels_driver[n] for n in order_driver]

    ax_driver_legend.legend(handles_driver, labels_driver, loc='center',
                            facecolor=(.75, .75, .75))
    ax_driver_legend.axis('off')

    plt.suptitle(f'F1 {result_type} by Constructor and Driver')

    gs.tight_layout(fig, rect=(0,0,1,0.95))
class ConstantViewer(object):
    """
Class meant to visualize the constants of a log file for the Motion Profiler of Walton Robotics
    """

    def __init__(self, clf, show_outliers: bool = False) -> None:
        """
        :param clf: the model to use to separate the data
        :param show_outliers: True if black dots should be placed in the 3d plot to represent the outliers False otherwise
        """
        super().__init__()

        self.showing = False
        self.show_outliers = show_outliers
        self.clf = clf
        self.fig = plt.figure("Scaled 3d  data")

        fig_manager = plt.get_current_fig_manager()
        fig_manager.window.showMaximized()

        self.gs = GridSpec(3, 4, self.fig)

        self.master_plot = self.fig.add_subplot(self.gs[:3, :3], projection='3d')
        self.time_velocity = self.fig.add_subplot(self.gs[0, -1])
        self.time_power = self.fig.add_subplot(self.gs[1, -1])
        self.power_velocity = self.fig.add_subplot(self.gs[2, -1])

    def show(self):
        """
    Shows the figure
        """

        if not self.showing:
            self.gs.tight_layout(self.fig)

            self.fig.show()
            self.showing = True

    def close_all(self):
        """
    Closes the figure
        """
        if self.showing:
            self.showing = False
            plt.close(self.fig)

    def plot_3d_plot(self, features, headers, labels):
        """
    PLots the features in a 3d plot including the hyperplane that separates the data
        :param features: the features to use to plot in the graph
        :param headers: the axis titles
        :param labels: the color of each data point
        """
        self.master_plot.scatter(features[:, 0], features[:, 1], features[:, 2], c=labels)
        self.master_plot.set_xlabel(headers[0])
        self.master_plot.set_ylabel(headers[1])
        self.master_plot.set_zlabel(headers[2])

        plot_hyperplane(self.clf, self.master_plot, colors='orange')

    def manipulate_features(self, features: np.ndarray, file_data: np.ndarray) -> (np.ndarray, np.ndarray):
        """
    Return the features manipulated in a way as to make the algorithm for separating the data more accurate.
        :param features: the features to use
        :param file_data: the log file's data
        :return: the manipulated features array, the outliers of the data set and the data scaler
        """

        if contains_key(file_data, "motionState"):
            moving_mask = file_data["motionState"] == "MOVING"
            features = features[moving_mask]
            file_data = file_data[moving_mask]

        new_features = None
        scalers = {}
        if contains_key(file_data, "pathNumber"):

            for i in range(file_data["pathNumber"].min(), file_data["pathNumber"].max() + 1):
                min_max_scaler = MinMaxScaler()

                path_number = file_data["pathNumber"] == i
                scalers[min_max_scaler] = path_number

                features_at_path = features[path_number]

                half = features_at_path.shape[0] // 2
                coefficient, _ = find_linear_best_fit_line(features_at_path[:half, 2], features_at_path[:half, 0])

                if coefficient < 0:
                    features_at_path[:, 0] *= - 1

                features_at_path = min_max_scaler.fit_transform(features_at_path)
                outliers_free_features = features_at_path

                if new_features is None:
                    new_features = outliers_free_features
                else:
                    new_features = np.concatenate((new_features, outliers_free_features), 0)
        else:
            min_max_scaler = MinMaxScaler()
            scalers[min_max_scaler] = np.full(features.shape[0], True)
            new_features = min_max_scaler.fit_transform(features)

        outlier_detector = OneClassSVM(gamma=10)  # Seems to work best

        outlier_detector.fit(new_features)
        outlier_prediction = outlier_detector.predict(new_features)
        outliers = new_features[outlier_prediction == -1]
        new_features = new_features[outlier_prediction == 1]

        features = self.reverse_scalling(new_features, scalers, outlier_prediction)

        if self.show_outliers:
            plot_hyperplane(outlier_detector, self.master_plot, interval=.04, colors="orange")

        return new_features, outliers, features

    def reverse_scalling(self, features, scalers, outlier_prediction):
        features = np.copy(features)

        for scaler, index in zip(scalers.keys(), scalers.values()):
            index = index[outlier_prediction == 1]

            features[index] = scaler.inverse_transform(features[index])

        return features

    def graph(self, file_data):
        """
    Graphs the features from the log file. Creates a 3D graph with time, average power to motors and velocity as axises.
    It also decomposes the dimensions into individual 2D graphs.
        :param file_data: the log file to use to extract the data from
        """
        self.clear_graphs()

        features, headers = get_features(file_data)

        new_scaled_features, outliers, features = self.manipulate_features(features, file_data)
        # features = scaler.inverse_transform(new_scaled_features)

        labels = self.clf.predict(new_scaled_features)
        color_labels = list(map(lambda x: 'r' if x == 0 else 'b', labels))

        self.plot_3d_plot(new_scaled_features, headers, color_labels)

        if self.show_outliers:
            self.master_plot.scatter(outliers[:, 0], outliers[:, 1], outliers[:, 2], c="black")

        self.show_constants_graph(features, file_data, labels, c=color_labels)

        plot_subplots(new_scaled_features, headers, (self.time_velocity, self.time_power, self.power_velocity),
                      color_labels)

        plt.draw()

    def clear_graphs(self):
        """
    Clears all the axes
        """
        for ax in (self.master_plot, self.time_velocity, self.time_power, self.power_velocity):
            ax.cla()

    def show_grid(self):
        """
    Shows the grids for the major ticks in the plot.
        """
        for ax in (self.time_velocity, self.time_power, self.power_velocity):
            ax.grid(True)

    def show_constants_graph(self, features, file_data, labels, c=None):
        """
    Creates an addition figure that will display the a graph with the constants on it and also the lines of best fit of
    the accelerating portion of it, the decelerating portion of it and the average of both of those lines
        :param features: the features to use to show the graph and find the constants from
        :param file_data: the whole file data
        :param labels: the labels to say if a data point is accelerating or not
        :param c: the color to plot the points
        :return the constants for the motion profiling kV, kK and kAcc
        """
        if is_straight_line(file_data):
            easygui.msgbox("It was determined that the robot was trying to go straight. "
                           "As an ongoing feature the program will be able detect kLag, etc... "
                           "however for the instance this features has not been added")

        figure = plt.figure("Constants graph")
        constants_plot = figure.gca()
        constants_plot.set_xlabel("Velocity")
        constants_plot.set_ylabel("Average Power")

        fig_manager = plt.get_current_fig_manager()
        fig_manager.window.showMaximized()

        x = features[:, 1]
        y = features[:, 0]

        constants_plot.scatter(x, y, c=labels if c is None else c)

        acceleration_mask = labels == visualize.ACCELERATING
        coef_accelerating, intercept_accelerating = find_linear_best_fit_line(x[acceleration_mask],
                                                                              y[acceleration_mask])
        deceleration_mask = labels == visualize.DECELERATING
        coef_decelerating, intercept_decelerating = find_linear_best_fit_line(x[deceleration_mask],
                                                                              y[deceleration_mask])

        x_lim = np.array(constants_plot.get_xlim())
        y_lim = np.array(constants_plot.get_ylim())

        x, y = get_xy_limited(intercept_accelerating, coef_accelerating, x_lim, y_lim)
        constants_plot.plot(x, y)
        x, y = get_xy_limited(intercept_decelerating, coef_decelerating, x_lim, y_lim)
        constants_plot.plot(x, y)
        # constants_plot.plot(x_lim, coef_accelerating * x_lim + intercept_accelerating)
        # constants_plot.plot(x_lim, coef_decelerating * x_lim + intercept_decelerating)

        average_coef = (coef_accelerating + coef_decelerating) / 2
        average_intercept = (intercept_accelerating + intercept_decelerating) / 2
        # constants_plot.plot(x_lim, average_coef * x_lim + average_intercept)

        x, y = get_xy_limited(average_intercept, average_coef, x_lim, y_lim)
        constants_plot.plot(x, y)

        acceleration_coefficient = (coef_accelerating - average_coef)
        acceleration_intercept = (intercept_accelerating - average_intercept)
        k_acc = ((x.max() + x.min()) / 2) * acceleration_coefficient + acceleration_intercept

        bbox_props = dict(boxstyle="round,pad=0.3", fc="cyan", ec="b", lw=2)
        constants_plot.text(x_lim[0], y_lim[1],
                            "kV: {}\nkK: {}\nkAcc: {}".format(average_coef, average_intercept, k_acc), ha="left",
                            va="top", bbox=bbox_props)

        return average_coef, average_intercept, k_acc
示例#34
0
文件: calc_flux.py 项目: b1quint/btfi
    def run(self, show=False):

        # Load data
        filename = self.filename
        d = pyfits.getdata(filename)
        h = pyfits.getheader(filename)
        path, filename = os.path.split(filename)

        # Get wavelength calibration
        z = np.arange(h['naxis3'])
        w = h['CRVAL3'] + h['CDELT3'] * (z - h['CRPIX3'])

        # Signal-to-noise clipping
        s = d.sum(axis=2)
        s = s.sum(axis=1)

        gauss_pw, _ = self.fit_gaussian(z, s)
        log.debug("Gaussian parameters ---")
        log.debug("p[0] = %.2f" % gauss_pw[0])
        log.debug("p[1] = %.2f" % gauss_pw[1])
        log.debug("p[2] = %.2f" % gauss_pw[2])
        log.debug("p[3] = %.2f" % gauss_pw[3])

        lor_p = self.fit_lorentzian(z, s)
        log.debug("Lorentzian parameters ---")
        log.debug("p[0] = %.2f" % lor_p[0])
        log.debug("p[1] = %.2f" % lor_p[1])
        log.debug("p[2] = %.2f" % lor_p[2])
        log.debug("p[3] = %.2f" % lor_p[3])

        fwhm = np.abs(gauss_pw[2] * 2 * np.sqrt(2 * np.log(2)))
        filter_ = np.where(np.abs(z - gauss_pw[1]) < fwhm, True, False)

        if show:
            plt.plot(z, self.gaussian(gauss_pw, z), 'r-', lw=2, label='Gaussian Fit')
            plt.plot(z, self.lorentzian(lor_p, z), 'b-', lw=2, label='Lorentzian Fit')
            plt.plot(z, s, 'ko')
            plt.plot(z[filter_], s[filter_], 'ro')
            plt.title('Cube collapsed in XY and fits.')
            plt.grid()
            plt.legend(loc='best')
            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            plt.show()

        signal = d[filter_].mean(axis=0)
        noise = d[np.logical_not(filter_)].mean(axis=0)
        target_snr = 3
        snr = signal / noise
        snr = ndimage.median_filter(snr, 3)
        snr_mask = np.where(signal > target_snr * noise, True, False)

        snr_laplacian = ndimage.morphological_laplace(snr * snr_mask, size=3)
        snr_mask *= np.where(np.abs(snr_laplacian) < 5.0, True, False)

        snr_mask = ndimage.binary_opening(snr_mask, iterations=5)
        snr_mask = ndimage.binary_closing(snr_mask, iterations=5)

        # SNR MASK Based on circular aperture
        # aperture_radius = 1 # arcmin
        # aperture_radius = aperture_radius / 60 # arcmin to deg
        # aperture_radius = np.abs(aperture_radius / h['CD1_1']) # deg to pix
        # print(aperture_radius)
        # c = SkyCoord('7:41:55.400', '-18:12:33.00', frame=h['RADECSYS'].lower(), unit=(u.hourangle, u.deg))
        # x, y = np.arange(h['NAXIS1']), np.arange(h['NAXIS2'])
        # X, Y = np.meshgrid(x, y)
        # center_wcs = wcs.WCS(h)
        # center = center_wcs.wcs_world2pix(c.ra.deg, c.dec.deg, 6563, 1)
        # snr_mask = np.sqrt((X - center[0]) ** 2 + (Y - center[1]) ** 2)
        # snr_mask = np.where(snr_mask < aperture_radius, True, False)
        # plt.imshow(snr_mask)
        # plt.show()

        # SNR MASK Based on squared area
        aperture_width = 256 * 4.048e-1 # arcsec (from original image)
        aperture_width /= 3600 # arcsec to deg
        aperture_width /= np.abs(h['CD1_1']) # deg to pix
        c = SkyCoord('7:41:55.197', '-18:12:35.97', frame=h['RADECSYS'].lower(), unit=(u.hourangle, u.deg))
        x, y = np.arange(h['NAXIS1']), np.arange(h['NAXIS2'])
        X, Y = np.meshgrid(x, y)
        center_wcs = wcs.WCS(h)
        center = center_wcs.wcs_world2pix(c.ra.deg, c.dec.deg, 6563, 1)
        print(center, np.abs(X - center[0]), np.abs(Y - center[1]), aperture_width)
        X = np.where(np.abs(X - center[0]) < aperture_width / 2, True, False)
        Y = np.where(np.abs(Y - center[1]) < aperture_width / 2, True, False)
        snr_mask = X * Y
        plt.imshow(snr_mask)
        plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
        plt.show()

        if show:

            fig1 = plt.figure(figsize=(20, 5))
            plt.title('Signal-to-Noise Ratio')
            gs = GridSpec(1, 3)

            ax1 = plt.subplot(gs[0])
            ax1.set_title('SNR')
            im1 = ax1.imshow(snr, cmap='cubehelix', interpolation='nearest',
                       origin='lower', vmin=3, vmax=20)
            div1 = make_axes_locatable(ax1)
            cax1 = div1.append_axes("right", size="5%", pad=0.05)
            cbar1 = plt.colorbar(mappable=im1, cax=cax1, use_gridspec=True,
                                 orientation='vertical')

            ax2 = plt.subplot(gs[1])
            ax2.set_title('Mask')
            im2 = ax2.imshow(np.where(snr_mask, 1, 0), cmap='gray',
                             interpolation='nearest', origin='lower',
                             vmin=0, vmax=1)
            div2 = make_axes_locatable(ax2)
            cax2 = div2.append_axes("right", size="5%", pad=0.05)
            cbar2 = plt.colorbar(mappable=im2, cax=cax2, use_gridspec=True,
                                 orientation='vertical')

            cmap = plt.get_cmap('cubehelix')
            cmap.set_bad('w', 1.0)
            ax3 = plt.subplot(gs[2])
            ax3.set_title('Masked')
            im3 = ax3.imshow(np.ma.masked_where(~snr_mask, snr), cmap=cmap, interpolation='nearest',
                       origin='lower', vmin=0)
            div3 = make_axes_locatable(ax3)
            cax3 = div3.append_axes("right", size="5%", pad=0.05)
            cbar3 = plt.colorbar(mappable=im3, cax=cax3, use_gridspec=True, orientation='vertical')

            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            gs.tight_layout(fig1)
            plt.show()

        pyfits.writeto(filename.replace('.','.SNR.'), snr, h, clobber=True)
        pyfits.writeto(filename.replace('.','.SNR_LAPLACIAN.'), snr_laplacian, h, clobber=True)

        # Adjust continuum
        continuum = self.fit_continuum(d)

        # Subtract continuum
        continuum = np.reshape(continuum, (continuum.size, 1, 1))
        continuum = np.repeat(continuum, d.shape[1], axis=1)
        continuum = np.repeat(continuum, d.shape[2], axis=2)
        d -= continuum
        del continuum

        # Integrate along the planetary nebulae
        d = d * snr_mask
        d = d.sum(axis=2)
        d = d.sum(axis=1)
        d = d / np.float(h['EXPTIME'])

        gauss_pw, _ = self.fit_gaussian(w, d)
        gauss_pc, _ = self.fit_gaussian(z, d)
        log.info("Gaussian parameters ---")
        log.info("p[0] = %.4f ADU/s" % gauss_pw[0])
        log.info("p[1] = %.4f A = %.4f channels" % (gauss_pw[1], gauss_pc[1]))
        log.info("p[2] = %.4f A = %.4f channels" % (gauss_pw[2], gauss_pc[2]))
        log.info("p[3] = %.4f ADU/s" % gauss_pw[3])

        # total_flux = (gauss_pc[0] - gauss_pc[3]) * np.sqrt(2 * np.pi) \
        #              * gauss_pc[2]
        # log.info("Total flux = (a - d) * sqrt(2pi) * c")
        # log.info(" %.5E ADU/s" % total_flux)

        fwhm = np.abs(gauss_pw[2] * 2 * np.sqrt(2 * np.log(2)))
        filter_ = np.where(np.abs(w - gauss_pw[1]) < fwhm, True, False)

        # d = d - d[~filter_].mean()

        if show:
            plt.plot(w, self.gaussian(gauss_pw, w), 'r-', lw=2, label='Gaussian Fit')
            # plt.plot(w, self.lorentzian(lor_p, w), 'b-', lw=2, label='Lorentzian Fit')
            plt.plot(w[~filter_], d[~filter_], 'ko')
            plt.plot(w[filter_], d[filter_], 'ro')
            plt.title('Spectral profile of the masked area.')
            plt.xlabel(u'Wavelenght [$\AA$]')
            plt.ylabel(u'Integrated Count Level [ADU/s]')
            plt.grid()
            plt.legend(loc='best')
            plt.gcf().canvas.mpl_connect('key_press_event', self.on_key_press)
            plt.show()

        integrated_flux = (gauss_pc[0] - gauss_pc[3]) \
                          * (gauss_pc[2] * np.sqrt(2 * np.pi))
        log.info("Total flux: %.4E adu/s" % (integrated_flux))

        snr_mask = np.where(snr_mask, 1, 0)
        pyfits.writeto(
            os.path.join(path, filename.replace('.fits', '.mask.fits')),
            snr_mask, h, clobber=True)

        return
    bounds = np.unique(np.array(bounds))
    axes[i].plot(heights, density_sine(heights), '-', color=colors[b_factor])
    axes[i].plot(bounds, density_sine(bounds), 'o', color="C1", markersize=4)

    # Configure axes
    axes[i].set_ylim(-0.2, 1.2)
    axes[i].set_yticks([])
    axes[i].set_xticks([bottom, top])
    axes[i].set_xticklabels([r"$r_1$", r"$r_2$"])
    axes[i].set_xlabel("Depth")
    if i == 0:
        axes[i].set_title("(b)")

# Plot number of tesseroids (sine)
# --------------------------------
ax = plt.subplot(outer_grid[2])
ax.plot(b_factors, n_tess, 'o')
ax.grid()
ax.set_ylim(2, 21)
ax.yaxis.tick_right()
ax.yaxis.set_label_position("right")
ax.set_yticks(np.arange(3, 21, 2))
ax.set_xticks(np.arange(1, 11, 2))
ax.set_xlabel(r"$b$")
ax.set_ylabel("Number of tesseroids")
ax.set_title("(c)")

outer_grid.tight_layout(fig)
plt.savefig(figure_fname, dpi=300)
plt.show()
def plot_flux_annotated(
    unbound, bound, flux_unbound, flux_bound, flux_between, k_cat_bin, scaling=None, name=None, source_code=None
):

    fig = plt.figure(figsize=(6, 6))
    gs = GridSpec(1, 1, wspace=0.5, hspace=0.5)
    ax1 = plt.subplot(gs[0, 0])
    bins = len(unbound)

    ax1.scatter(range(len(bound)), bound, s=80, c="b")
    ax1.scatter(range(len(unbound)), unbound, s=80, c="r")

    if not scaling:
        scaling = 10 ** 3
    rng = range(bins)

    for i in range(bins - 1):
        if flux_bound[i, 1] < 0:
            af.right_to_left_bound_arrow(plt, flux_bound[i, 1], i, rng, unbound, bound, scaling)
        else:
            af.left_to_right_bound_arrow(plt, flux_bound[i, 1], i, rng, unbound, bound, scaling)

    for i in range(bins - 1):
        if flux_unbound[i, 1] < 0:
            af.right_to_left_unbound_arrow(plt, flux_unbound[i, 1], i, rng, unbound, bound, scaling)
        else:
            af.left_to_right_unbound_arrow(plt, flux_unbound[i, 1], i, rng, unbound, bound, scaling)

    for i in range(bins):
        # DRS: This is correct. Verified for group meeting 2015-10-05.
        if flux_between[i, 1] < 0:
            af.bound_to_unbound_arrow(plt, flux_between[i, 1], i, rng, unbound, bound, scaling)
        else:
            af.unbound_to_bound_arrow(plt, flux_between[i, 1], i, rng, unbound, bound, scaling)

    max_flux = max(abs(flux_between[:, 1]))
    max_index = np.where(abs(flux_between[:, 1]) == max_flux)[0]

    ax1.set_title("Flux visualized")
    ax1.set_xlabel("Reaction coordinate ($\phi$)")
    ax1.set_ylabel("Energy (a.u.)")

    bbox_props = dict(fc="white", alpha=0.65)
    ax1.annotate(
        af.format_decimal(decimal.Decimal(max_flux)),
        xy=(max_index, unbound[max_index]),
        xycoords="data",
        xytext=(+100, +120),
        textcoords="offset points",
        fontsize=22,
        bbox=bbox_props,
        arrowprops=dict(arrowstyle="->", facecolor="black", color="black", connectionstyle="arc3,rad=0.4", linewidth=2),
    )

    ax1.annotate(
        af.format_decimal(decimal.Decimal(flux_between[k_cat_bin, 1])),
        xy=(k_cat_bin, bound[k_cat_bin]),
        xycoords="data",
        xytext=(+100, -40),
        textcoords="offset points",
        fontsize=22,
        bbox=bbox_props,
        arrowprops=dict(
            arrowstyle="->", facecolor="black", color="black", connectionstyle="arc3,rad=-0.4", linewidth=2
        ),
    )

    st = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    sts = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")

    if name:
        if source_code is not None:
            text = st + " " + name + " in " + source_code
        else:
            text = st + " " + name
        fig.text(0.0, 0.0, text, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)
    else:
        f.text(0.0, 0.0, st, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)

    gs.tight_layout(fig, rect=[0, 0, 1, 1])
    # plt.savefig('Figures/flux-annotated-{}-{}.png'.format(sts, name), dpi=150)
    plt.show()
    plt.close()
ax2 = fig.add_subplot(gs[1, 0], facecolor="cornflowerblue")
ax2.scatter(x2, y2, s=20, c="grey", marker="s", linewidths=2, edgecolors="k")
ax2.set_ylabel("YLabel10", bbox=box)
ax2.set_xlabel("XLabel10", bbox=box)
for ticklabel in ax2.get_xticklabels():
    ticklabel.set_rotation(45)
ax2.yaxis.set_label_coords(-0.25, 0.5)
ax2.xaxis.set_label_coords(0.5, -0.25)

# subplot(2,2,4)
x3 = np.linspace(0, 10, 100)
y3 = np.exp(-x3)
ax3 = fig.add_subplot(gs[1, 1])
ax3.errorbar(x3,
             y3,
             fmt="b-",
             yerr=0.6 * y3,
             ecolor="lightsteelblue",
             elinewidth=2,
             capsize=0,
             errorevery=5)
ax3.set_ylabel("YLabel11", bbox=box)
ax3.set_xlabel("XLabel11", bbox=box)
ax3.xaxis.set_label_coords(0.5, -0.25)
ax3.set_ylim(-0.1, 1.1)
ax3.set_yticks(np.arange(0, 1.1, 0.1))

gs.tight_layout(fig)

plt.show()
def plot_flux_single_annotated(surface, flux, scaling=None, name=None, source_code=None):

    fig = plt.figure(figsize=(12, 12))
    gs = GridSpec(1, 1, wspace=0.5, hspace=0.5)
    ax1 = plt.subplot(gs[0, 0])
    bins = len(surface)

    ax1.scatter(range(len(surface)), surface, s=80, c="k")
    if not scaling:
        scaling = 10 ** 3
    rng = range(bins)

    for i in range(bins - 1):
        if flux[i, 1] < 0:
            plt.annotate(
                "",
                xy=(flux[i, 0], surface[i]),
                xycoords="data",
                xytext=(flux[i + 1, 0], surface[i + 1]),
                textcoords="data",
                arrowprops=dict(
                    arrowstyle="->, head_width=0.5",
                    color="b",
                    shrinkA=10,
                    shrinkB=10,
                    linewidth=abs(flux[i, 1]) * scaling,
                ),
            )
        else:
            plt.annotate(
                "",
                xy=(flux[i + 1, 0], surface[i + 1]),
                xycoords="data",
                xytext=(flux[i, 0], surface[i]),
                textcoords="data",
                arrowprops=dict(
                    arrowstyle="->, head_width=0.5",
                    color="b",
                    shrinkA=10,
                    shrinkB=10,
                    linewidth=abs(flux[i, 1]) * scaling,
                ),
            )
    ax1.set_title("Flux visualized")
    ax1.set_xlabel("Reaction coordinate ($\phi$)")
    ax1.set_ylabel("Energy (a.u.)")

    st = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    sts = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")

    if name:
        if source_code is not None:
            text = st + " " + name + " in " + source_code
        else:
            text = st + " " + name
        fig.text(0.0, 0.0, text, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)
    else:
        f.text(0.0, 0.0, st, fontsize=12, color="black", ha="left", va="bottom", alpha=0.5)

    gs.tight_layout(fig, rect=[0, 0, 1, 1])
    # plt.savefig(name+'-flux-cat-bin-{}.png'.format(k_cat_bin), dpi=150)
    plt.show()
    plt.close()
示例#39
0
def _spectrogram(tr,
                 starttime,
                 endtime,
                 is_infrasound,
                 win_dur=5,
                 db_lim=None,
                 freq_lim=None):
    """
    Make a combination waveform and spectrogram plot for an infrasound or
    seismic signal.

    Args:
        tr (:class:`~obspy.core.trace.Trace`): Input data, usually starts
            before `starttime` and ends after `endtime` (this function expects
            the response to be removed!)
        starttime (:class:`~obspy.core.utcdatetime.UTCDateTime`): Start time
        endtime (:class:`~obspy.core.utcdatetime.UTCDateTime`): End time
        is_infrasound (bool): `True` if infrasound, `False` if seismic
        win_dur (int or float): Duration of window [s] (this usually must be
            adjusted depending upon the total duration of the signal)
        db_lim (tuple): Tuple specifying colorbar / colormap limits [dB]
        freq_lim (tuple): Tuple defining frequency limits for spectrogram plot

    Returns:
        Tuple of (`fig`, `spec_line`, `wf_line`, `time_box`)
    """

    if is_infrasound:
        ref_val = REFERENCE_PRESSURE
        ylab = 'Pressure (Pa)'
        clab = 'Power (dB$_{%g\ \mathrm{μPa}}$/Hz)' % (REFERENCE_PRESSURE *
                                                       1e6)
        rescale = 1
    else:
        ref_val = REFERENCE_VELOCITY
        ylab = 'Velocity (μm/s)'
        clab = 'Power (dB$_{%g\ \mathrm{m/s}}$/Hz)' % REFERENCE_VELOCITY
        rescale = 1e6  # Converting to μm/s

    fs = tr.stats.sampling_rate
    nperseg = int(win_dur * fs)  # Samples
    nfft = np.power(2,
                    int(np.ceil(np.log2(nperseg))) + 1)  # Pad fft with zeroes

    f, t, sxx = signal.spectrogram(tr.data,
                                   fs,
                                   window='hann',
                                   nperseg=nperseg,
                                   nfft=nfft)

    sxx_db = 20 * np.log10(np.sqrt(sxx) / ref_val)  # [dB / Hz]

    t_mpl = tr.stats.starttime.matplotlib_date + (t / mdates.SEC_PER_DAY)

    fig = plt.figure(figsize=np.array(RESOLUTION) / DPI)

    # width_ratios effectively controls the colorbar width
    gs = GridSpec(2, 2, figure=fig, height_ratios=[2, 1], width_ratios=[40, 1])

    spec_ax = fig.add_subplot(gs[0, 0])
    wf_ax = fig.add_subplot(gs[1, 0], sharex=spec_ax)  # Share x-axis with spec
    cax = fig.add_subplot(gs[0, 1])

    wf_ax.plot(tr.times('matplotlib'), tr.data * rescale, 'k', linewidth=0.5)
    wf_ax.set_ylabel(ylab)
    wf_ax.grid(linestyle=':')
    max_value = np.abs(tr.copy().trim(starttime, endtime).data).max() * rescale
    wf_ax.set_ylim(-max_value, max_value)

    im = spec_ax.pcolormesh(t_mpl,
                            f,
                            sxx_db,
                            cmap=cc.m_rainbow,
                            rasterized=True)

    spec_ax.set_ylabel('Frequency (Hz)')
    spec_ax.grid(linestyle=':')
    spec_ax.set_ylim(freq_lim)

    # Tick locating and formatting
    locator = mdates.AutoDateLocator()
    wf_ax.xaxis.set_major_locator(locator)
    wf_ax.xaxis.set_major_formatter(_UTCDateFormatter(locator))
    fig.autofmt_xdate()

    # "Crop" x-axis!
    wf_ax.set_xlim(starttime.matplotlib_date, endtime.matplotlib_date)

    # Initialize animated stuff
    line_kwargs = dict(x=starttime.matplotlib_date, color='red', linewidth=1)
    spec_line = spec_ax.axvline(**line_kwargs)
    wf_line = wf_ax.axvline(**line_kwargs)
    time_box = AnchoredText(
        s=starttime.strftime('%H:%M:%S'),
        pad=0.2,
        loc='lower right',
        borderpad=0,
        prop=dict(color='red'),
    )
    spec_ax.add_artist(time_box)

    # Clip image to db_lim if provided (doesn't clip if db_lim=None)
    db_min, db_max = im.get_clim()
    im.set_clim(db_lim)

    # Automatically determine whether to show triangle extensions on colorbar
    # (kind of adopted from xarray)
    if db_lim:
        min_extend = db_min < db_lim[0]
        max_extend = db_max > db_lim[1]
    else:
        min_extend = False
        max_extend = False
    if min_extend and max_extend:
        extend = 'both'
    elif min_extend:
        extend = 'min'
    elif max_extend:
        extend = 'max'
    else:
        extend = 'neither'

    fig.colorbar(im, cax, extend=extend, extendfrac=EXTENDFRAC, label=clab)

    spec_ax.set_title('.'.join([
        tr.stats.network, tr.stats.station, tr.stats.location, tr.stats.channel
    ]))

    # Repeat tight_layout and update, janky but works...
    for _ in range(2):
        gs.tight_layout(fig)
        gs.update(hspace=0, wspace=0.05)

    # Finnicky formatting to get extension triangles (if they exist) to extend
    # above and below the vertical extent of the spectrogram axes
    pos = cax.get_position()
    triangle_height = EXTENDFRAC * pos.height
    ymin = pos.ymin
    height = pos.height
    if min_extend and max_extend:
        ymin -= triangle_height
        height += 2 * triangle_height
    elif min_extend and not max_extend:
        ymin -= triangle_height
        height += triangle_height
    elif max_extend and not min_extend:
        height += triangle_height
    else:
        pass
    cax.set_position([pos.xmin, ymin, pos.width, height])

    return fig, spec_line, wf_line, time_box
示例#40
0
for ticklabel in ax2.get_xticklabels():
    ticklabel.set_rotation(45)
ax2.yaxis.set_label_coords(-0.04, 0.5)
ax2.xaxis.set_label_coords(0.5, -0.12)
# 第三个子图位置
colors = ['#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00', '#00FFFF']
ax3 = fig.add_subplot(gs[1, 1])  #绘制在第2行和第2列
ax3.bar(GDP.index.values,
        GDP.GDP,
        width=0.6,
        align='center',
        color=colors,
        tick_label=GDP.Province)
ax3.set_xlabel('省份', fontsize=20, labelpad=15)
ax3.set_ylabel('GDP产值(万亿)', fontsize=20, labelpad=15)
# 添加表格
col_labels = ['GDP(万亿)']
row_labels = GDP.Province
table_vals = np.array(GDP.GDP.values).reshape(-1, 1)
col_colors = ['#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00', '#00FFFF']
my_table = plt.table(cellText=table_vals,
                     cellLoc='center',
                     colWidths=[0.1] * 6,
                     rowLabels=row_labels,
                     colLabels=col_labels,
                     rowColours=col_colors,
                     bbox=[0.8, 0.7, 0.1, 0.25])
# 显示
gs.tight_layout(fig)  #控制子图参数的
plt.show()