def draw(which, instr, scramble=True):

    arrow_params = {'length_includes_head': True, 'shape': 'full',
                        'head_starts_at_zero': False}

    fig, ax = plt.subplots(1)

    plt.axis('off')

    ax.set_xlim((0,120))
    ax.set_ylim((0,100))

    plt.text(5,50,"Genotype",fontsize=16,horizontalalignment='center',verticalalignment='center',rotation=90)

    if which <= 3:
        ax.add_patch(
                Rectangle((90,0), 10, 30, fill=False, color='red', hatch='////')
            )
        ax.add_patch(
                Rectangle((90,35), 10, 30, fill=True, color='green', hatch=None)
            )
        ax.add_patch(
                Rectangle((90,70), 10, 30, fill=True, color='blue', hatch=None)
            )

        plt.text(110,50,"Phenotype",fontsize=16,rotation=90,horizontalalignment='center',verticalalignment='center')

    for x,y,__ in instr:
        if any(xc == x+10 and yc == y for xc,yc,__  in instr):
            ax.add_line(Line([x, x+10],[y, y],color='black',zorder=-1))

        if any(xc == x and yc == y+10 for xc,yc,__  in instr):
            ax.add_line(Line([x, x],[y, y+10],color='black',zorder=-1))

    shuffle(instr)
    instr.sort(key=lambda i: i[0],reverse=True)

    for x,y,color in instr:
        ax.add_patch(
                Circle((x,y), radius=3, fill=True, color='white')
            )
        ax.add_patch(
                Circle((x,y), radius=3, fill=True if which <= 2 or color != 'red' else False, color='black' if which <= 2 else color, hatch=None if which <= 2 or color != 'red' else '////')
            )

    if which > 3 or which <= 1: return

    for x,y,color in instr:
        ax.arrow(x, y, 95-x+(uniform(-2,2) if scramble else 0), (50 if color == 'green' else 15 if color == 'red' else 85 if color == 'blue' else None)-y+(uniform(-10,10) if scramble else 0), width=1.5, fill=True, color='gray' if which == 2 else color, ec='white', lw=0.5, **arrow_params)
示例#2
0
    def check(self, msize=10):

        self.id = '|'.join([L[0] for L in self.label_id])

        if self.left_color and self.right_color:
            self.vals = {
                'color': self.left_color,
                'fillstyle': 'left',
                'marker': 'o',
                'markerfacecoloralt': self.right_color,
                'mew': 0.0
            }
        elif self.left_color:
            self.vals = {
                'color': self.left_color,
                'marker': 'o',
                'mew': 0.0
            }  #, 'markersize': self.size}
        else:
            self.vals = {'mew': 0.0}

        if self.marker: self.vals['marker'] = self.marker
        self.proxy = Line([0], [0],
                          linestyle='none',
                          markersize=msize,
                          **self.vals)

        self.vals['markersize'] = self.size

        return self
示例#3
0
 def __init__(self, label, handles, color='k'):
     if label not in SortFail.labels:
         marker = SortFail.markers[len(SortFail.labels)]
         SortFail.labels.append(label)
         handles.append(
             Line([0], [0], marker=marker, label=label, color=color))
     self.marker = SortFail.markers[SortFail.labels.index(label)]
     self.color = color
 def create_time_line(self, axes, t, y, time_value, label):
     if time_value != t[-1]:
         time_line = Line([time_value, time_value],
                          [np.min(y), y[np.where(t == time_value)][0]],
                          ls=self.line_style,
                          c=self.line_color)
         axes.add_line(time_line)
         axes.text(time_value + self.spacing, self.label_positions[self.counter],
                   label, size=self.font_size)
         self.counter += 1
示例#5
0
    def line(self, origin, dest):
        if not self.drawing:
            return
        origin = self._to_canvas(origin)
        dest = self._to_canvas(dest)
        line = Line(
            [origin[0], dest[0]],
            [origin[1], dest[1]],
            transform=self.figure.transFigure,
            **self.attributes,
        )

        self.figure.lines.append(line)
        self.figure.canvas.draw()
示例#6
0
    def load_plot(self):
        """ loads the plot lines from the variables assigned to the class """
        x = []
        y = []

        for v in self.variables:
            for i in v.get_all_points():
                x.append(i[0])
                y.append(i[1])

        x.sort()
        y.sort()

        sp = self.figure.add_subplot(111, title=self.variables[0].label)
        """ create a set of points that represent continuous lines
        ex: [(x1,y1),(x2,y2)], [(x2,y2),(x3,y3)]
    """
        for k, v in enumerate(self.variables):
            for i, f in enumerate(v.functions):
                fx = []
                fy = []
                for p in f.points:
                    fx.append(p[0])
                    fy.append(p[1])

                if i == len(v.functions) - 1:
                    fx.append(fx[len(fx) - 1] + 10)
                    fy.append(f.membership(fx[len(fx) - 1]))

                if k != 0:
                    line = Line(fx, fy, linewidth=2, c=[1, 0, 0])
                else:
                    line = Line(fx, fy, linewidth=2)
                sp.add_line(line)

        sp.plot()
        sp.axis([x[0], x[len(x) - 1] + 10, y[0], y[len(y) - 1] + 0.5])
def main():
    # Define the two coordinate systems with different ellipses.
    wgs84 = ccrs.PlateCarree(globe=ccrs.Globe(datum='WGS84', ellipse='WGS84'))
    sphere = ccrs.PlateCarree(
        globe=ccrs.Globe(datum='WGS84', ellipse='sphere'))

    # Define the coordinate system of the data we have from Natural Earth and
    # acquire the 1:10m physical coastline shapefile.
    geodetic = ccrs.Geodetic(globe=ccrs.Globe(datum='WGS84'))
    dataset = cfeature.NaturalEarthFeature(category='physical',
                                           name='coastline',
                                           scale='10m')

    # Create a Stamen map tiler instance, and use its CRS for the GeoAxes.
    tiler = StamenTerrain()
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1, projection=tiler.crs)
    ax.set_title('The effect of incorrectly referencing the Solomon Islands')

    # Pick the area of interest. In our case, roughly the Solomon Islands, and
    # get hold of the coastlines for that area.
    extent = [155, 163, -11.5, -6]
    ax.set_extent(extent, geodetic)
    geoms = list(dataset.intersecting_geometries(extent))

    # Add the Stamen aerial imagery at zoom level 7.
    ax.add_image(tiler, 7)

    # Transform the geodetic coordinates of the coastlines into the two
    # projections of differing ellipses.
    wgs84_geoms = [
        geom_transform(transform_fn_factory(wgs84, geodetic), geom)
        for geom in geoms
    ]
    sphere_geoms = [
        geom_transform(transform_fn_factory(sphere, geodetic), geom)
        for geom in geoms
    ]

    # Using these differently referenced geometries, assume that they are
    # both referenced to WGS84.
    ax.add_geometries(wgs84_geoms, wgs84, edgecolor='white', color='none')
    ax.add_geometries(sphere_geoms, wgs84, edgecolor='gray', color='none')

    # Create a legend for the coastlines.
    legend_artists = [
        Line([0], [0], color=color, linewidth=3) for color in ('white', 'gray')
    ]
    legend_texts = ['Correct ellipse\n(WGS84)', 'Incorrect ellipse\n(sphere)']
    legend = ax.legend(legend_artists,
                       legend_texts,
                       fancybox=True,
                       loc='lower left',
                       framealpha=0.75)
    legend.legendPatch.set_facecolor('wheat')

    # Create an inset GeoAxes showing the location of the Solomon Islands.
    sub_ax = fig.add_axes([0.7, 0.625, 0.2, 0.2],
                          projection=ccrs.PlateCarree())
    sub_ax.set_extent([110, 180, -50, 10], geodetic)

    # Make a nice border around the inset axes.
    effect = Stroke(linewidth=4, foreground='wheat', alpha=0.5)
    sub_ax.outline_patch.set_path_effects([effect])

    # Add the land, coastlines and the extent of the Solomon Islands.
    sub_ax.add_feature(cfeature.LAND)
    sub_ax.coastlines()
    extent_box = sgeom.box(extent[0], extent[2], extent[1], extent[3])
    sub_ax.add_geometries([extent_box],
                          ccrs.PlateCarree(),
                          color='none',
                          edgecolor='blue',
                          linewidth=2)

    plt.show()
示例#8
0
     sort.counting_sort,
     sort.selection_sort,
     sort.bubble_sort,
     sort.max_heap_sort,
     sort.bucket_sort,
     # for the brave hearted
     sort.gnome_sort,
     sort.bogo_sort
 ]
 labels = [alg.__name__ for alg in algs]
 colors = [
     cm.get_cmap('gist_rainbow')(i)
     for i in np.linspace(0.0, 1.0, len(labels))
 ]
 handles = [
     Line([0], [0], color=color, lw=4, label=label)
     for label, color in zip(labels, colors)
 ]
 fig, axs = plt.subplots(1, 5, sharey=True, figsize=(25, 5))
 for plot in range(5):
     limit = plot * 2
     for alg, color in zip(algs, colors):
         durations = []
         error_flag = False
         measurement_count = 3
         measurements = np.empty(measurement_count)
         for idx, length in enumerate(lengths):
             arr = np.random.randint(pow(10, limit), pow(10, limit + 1),
                                     length)
             try:
                 for measurement in range(measurement_count):
    def run(self, data):

        # dict for calculated values
        output = {}

        # reset counter
        self.counter = 0

        # calculate data sets
        t = data["results"]["time"]
        y = data["results"]["Model"][:, 0]
        yd = data["results"]["Trajectory"][-1][0]

        self.label_positions = np.arange(np.min(y) + 0.1 * yd, yd, (yd - np.min(y)) / 4)

        # create plot
        fig = Figure()
        axes = fig.add_subplot(111)
        axes.set_title(r"\textbf{Sprungantwort}")
        axes.plot(t, y, c='k')
        axes.set_xlim(left=0, right=t[-1])
        axes.set_xlabel(r"\textit{Zeit [s]}")
        axes.set_ylabel(r"\textit{Systemausgang [m]}")

        # create desired line
        desired_line = Line([0, t[-1]], [yd, yd], lw=1, ls=self.line_style, c='k')
        axes.add_line(desired_line)

        # calc rise-time (Anstiegszeit)
        try:
            t_rise = t[np.where(y > 0.9*yd)][0]
            self.create_time_line(axes, t, y, t_rise, r"$T_r$")
            output.update({"t_rise": t_rise})
        except IndexError:
            output.update({"t_rise": None})

        # calc correction-time (Anregelzeit)
        try:
            t_corr = t[np.where(y > yd)][0]
            self.create_time_line(axes, t, y, t_corr, r"$T_{anr}$")
            output.update({"t_corr": t_corr})
        except IndexError:
            output.update({"t_corr": None})

        # calc overshoot-time and overshoot in percent (Überschwingzeit und Überschwingen)
        if output["t_corr"]:
            if yd > 0:
                y_max = np.max(y[np.where(t > output["t_corr"])])
            else:
                y_max = np.min(y[np.where(t > output["t_corr"])])

            t_over = t[np.where(y == y_max)][0]
            overshoot = y_max - yd
            overshoot_per = overshoot/yd * 100

            self.create_time_line(axes, t, y, t_over, r"$T_o$")
            output.update(dict(t_over=t_over, overshoot=overshoot, overshoot_percent=overshoot_per))
        else:
            output.update(dict(t_over=None, overshoot=None, overshoot_percent=None))

        # calc damping-time (Beruhigungszeit)
        try:
            enter_idx = -1
            for idx, val in enumerate(y):
                if enter_idx == -1:
                    if abs(val - yd) < self.eps:
                        enter_idx = idx
                else:
                    if abs(val - yd) >= self.eps:
                        enter_idx = -1

            t_damp = t[enter_idx]
            self.create_time_line(axes, t, y, t_damp, r"$T_{\epsilon}$")
            output.update({"t_damp": t_damp})
        except IndexError:
            output.update({"t_damp": None})

        # create epsilon tube
        upper_bound_line = Line([0, t[-1]], [yd + self.eps, yd + self.eps], ls="--", c=self.line_color)
        axes.add_line(upper_bound_line)
        lower_bound_line = Line([0, t[-1]], [yd - self.eps, yd - self.eps], ls="--", c=self.line_color)
        axes.add_line(lower_bound_line)

        # calc stationary control deviation
        control_deviation = y[-1] - yd
        output.update({"stationary_error": control_deviation})

        self.calc_metrics(data, output)

        # check for sim success
        if not data["results"]["finished"]:
            for key in output.keys():
                output[key] = None

        # add settings and metrics to dictionary results
        results = {}
        results.update({"metrics": output})
        results.update({"modules": data["modules"]})

        canvas = FigureCanvas(fig)

        self.write_output_files(data["regime name"], fig, results)

        return [dict(name='_'.join([data["regime name"], self.name]), figure=canvas)]
    mpl.rcParams['toolbar'] = 'None'

    lengths = [int(10 ** (x+1/2)) for x in range(9)]
    algs = [search.binary_search,
            search.first_occurrence,
            search.interpolation_search,
            search.jump_search,
            search.last_occurrence,
            search.linear_search,
            search.search_insert,
            search.search_rotate
            ]
    labels = [alg.__name__ for alg in algs]
    colors = [cm.get_cmap('gist_rainbow')(i)
              for i in np.linspace(0.0, 1.0, len(labels))]
    handles = [Line([0], [0], color=color, lw=4, label=label)
               for label, color in zip(labels, colors)]
    fig, axs = plt.subplots(1, 5, sharey=True, figsize=(25, 5))
    for plot in range(5):
        step = (plot+1) ** 5
        for alg, color in zip(algs, colors):
            rand_gen = np.random.default_rng(0)
            durations = []
            error_flag = False
            measurement_count = 3
            measurements = np.empty(measurement_count)
            for idx, length in enumerate(lengths):
                arr = np.arange(0, step*length, step)
                try:
                    for measurement in range(measurement_count):
                        index = rand_gen.choice(length)
示例#11
0
def render_map(time_current, ships, margin, plot=False):

    # Get base map
    # cimgt.StamenTerrain() zoom-level 12 or 13
    # cimgt.GoogleTiles(style="satellite")
    # cimgt.GoogleTiles(style="terrain")
    # cimgt.MapboxTiles ! (More args required)
    # cimgt.MapQuestOpenAerial (Error downloading tiles)
    # cimgt.MapQuestOSM
    # cimgt.QuadtreeTiles
    # cimgt.OSM

    basemap_tiles = CachedTiler(cimgt.StamenTerrain())
    zoom_level = 12

    min_lon = min([s[0].min_lon for s in ships])
    max_lon = max([s[0].max_lon for s in ships])
    min_lat = min([s[0].min_lat for s in ships])
    max_lat = max([s[0].max_lat for s in ships])

    d_lon = max_lon - min_lon
    d_lat = max_lat - min_lat

    # set up axes
    fig = plt.figure()
    fig.set_size_inches(20, 10)
    ax = plt.axes(projection=basemap_tiles.crs)  # Create a GeoAxes in the tile's projection.
    ax.set_extent([min_lon - margin * d_lon,
                   max_lon + margin * d_lon,
                   min_lat - margin * d_lat,
                   max_lat + margin * d_lat])  # Limit  extent to track bounding box.
    ax.add_image(basemap_tiles, zoom_level)  # Add the basemap data at zoom level 8.

    # Use the cartopy interface to create a matplotlib transform object
    # for the Geodetic coordinate system. We will use this along with
    # matplotlib's offset_copy function to define a coordinate system which
    # translates the text by 25 pixels to the left.
    # geodetic_transform = ccrs.Geodetic()._as_mpl_transform(ax)
    # text_transform = offset_copy(geodetic_transform, units='dots', x=-25)

    # Add Title, Legend, Time indicator
    plt.title(time_current.strftime("%Y-%m-%d"))

    ship_names = [s[0].meta["name"] for s in ships]
    ship_colors = [s[0].meta["color"] for s in ships]

    legend_artists = [Line([0], [0], color=color, linewidth=1) for color in ship_colors]
    legend = plt.legend(legend_artists, ship_names, fancybox=True, loc='lower left', framealpha=0.75)
    legend.legendPatch.set_facecolor('none')

    plt.annotate(str(time_current.strftime("%H:%M UTM")), xy=(0.5, 0.05), xycoords='axes fraction')

    # Add ship tracks
    for ship in ships:
        vertices = sgeom.LineString(zip(ship[0].lons(max_time=time_current), ship[0].lats(max_time=time_current)))
        ax.add_geometries([vertices], ccrs.PlateCarree(), facecolor='none', edgecolor=ship[0].meta["color"])

        # Add a marker for the ships last location
        last_pos = ship[0].last_position_at_time(time_current)
        last_info = ship[0].last_info_at_time(time_current)
        plt.plot(last_pos[0], last_pos[1], marker=(3, 0, last_info[0]), color=ship[0].meta["color"], markersize=5,
                 alpha=1,
                 transform=ccrs.PlateCarree())

    # plt.annotate("Shelby: {:.1f} kts".format(last_info[1] * 1.94384), xy=(0.9, 0.05), xycoords='axes fraction')
    # plt.annotate("Elixir: {:.1f} kts".format(last_info[1] * 1.94384), xy=(0.9, 0.05), xycoords='axes fraction')

    # finalize
    if plot:
        plt.show()
    return fig
示例#12
0
def plot_legend(cols,
                legend_texts,
                legend_styles,
                plot_vars=[],
                plot_dict=[],
                bbox_loc=[]):
    "Plot legend box"

    # Default number of legend columns
    ncols = 1

    if not legend_texts:
        legend_texts = []
        for ivar in plot_vars:
            if plot_dict['fig_ens_col'] == [] or ivar['ens'] != 'member':
                legend_texts.append(ivar['legend'])

        bbox_loc = (0.6, 1.2, 0, 0)
        if len(plot_vars) > 18:
            ncols = 4
            bbox_loc = (0.9, 1.15, 0, 0)

        elif len(plot_vars) > 12:
            ncols = 3
            bbox_loc = (0.8, 1.15, 0, 0)

        elif len(plot_vars) > 6:
            ncols = 2
            bbox_loc = (0.7, 1.15, 0, 0)

    if not legend_styles:
        legend_styles = ['-' for x in cols]

    # Create a legend
    istyle = 0
    legend_artists = []
    for color in cols:
        legend_artists.append(
            Line([0], [0],
                 color=color,
                 linewidth=2,
                 linestyle=legend_styles[istyle]))
        istyle += 1

    #legend_artists = [Line([0], [0], color=color, linewidth=2)
    #                  for color in cols]

    if bbox_loc:
        legend = plt.legend(legend_artists,
                            legend_texts,
                            fancybox=True,
                            loc='upper right',
                            framealpha=0.75,
                            ncol=ncols,
                            bbox_to_anchor=bbox_loc)
    else:
        legend = plt.legend(legend_artists,
                            legend_texts,
                            fancybox=True,
                            loc='upper right',
                            framealpha=0.75,
                            ncol=ncols)

    legend.legendPatch.set_facecolor('wheat')
    def run(self, data):

        # dict for calculated values
        output = {}

        # reset counter
        self.counter = 0

        # calculate data sets
        t = data["results"]["time"]
        y = data["results"]["Model"][:, self.model_idx]
        traj_data = data["results"]["Trajectory"]
        if traj_data.ndim == 2:
            yd = data["results"]["Trajectory"][-1, self.trajectory_idx]
        elif traj_data.ndim == 3:
            yd = data["results"]["Trajectory"][-1, self.trajectory_idx, 0]
        else:
            raise ValueError("unknown Trajectory type.")

        self.label_positions = np.arange(y.min() + 0.1 * yd, yd,
                                         (yd - y.min()) / 4)

        # create plot
        fig = Figure()
        axes = fig.add_subplot(111)
        axes.grid()
        axes.set_title(r"Step Response")
        axes.plot(t, y, c=colors.HKS44K100, linewidth=self.line_width)
        axes.set_xlim(left=0, right=t[-1])
        axes.set_xlabel(r"Time in $\si{\second}$")
        axes.set_ylabel(r"System Output in $\si{\metre}$")

        # create desired line
        desired_line = Line([0, t[-1]], [yd, yd],
                            lw=1,
                            ls=self.line_style,
                            c='k')
        axes.add_line(desired_line)

        # calc rise-time (Anstiegszeit)
        try:
            t_rise = t[np.where(y > 0.9 * yd)][0]
            self.create_time_line(axes, t, y, t_rise, r"$T_r$")
            output.update({"t_rise": t_rise})
        except IndexError:
            output.update({"t_rise": None})

        # calc correction-time (Anregelzeit)
        try:
            t_corr = t[np.where(y > yd)][0]
            self.create_time_line(axes, t, y, t_corr, r"$T_{c}$")
            output.update({"t_corr": t_corr})
        except IndexError:
            output.update({"t_corr": None})

        # calc overshoot-time and overshoot in percent
        # (Überschwingzeit und Überschwingen)
        if output["t_corr"]:
            if yd > 0:
                y_max = np.max(y[np.where(t > output["t_corr"])])
            else:
                y_max = np.min(y[np.where(t > output["t_corr"])])

            t_over = t[np.where(y == y_max)][0]
            overshoot = y_max - yd
            overshoot_per = overshoot / yd * 100
            self._logger.info("Overshoot: {}%".format(overshoot_per))

            self.create_time_line(axes, t, y, t_over, r"$T_o$")
            output.update(
                dict(t_over=t_over,
                     overshoot=overshoot,
                     overshoot_percent=overshoot_per))
        else:
            output.update(
                dict(t_over=None, overshoot=None, overshoot_percent=None))

        # calc damping-time (Beruhigungszeit)
        try:
            enter_idx = -1
            for idx, val in enumerate(y):
                if enter_idx == -1:
                    if abs(val - yd) < self.eps:
                        enter_idx = idx
                else:
                    if abs(val - yd) >= self.eps:
                        enter_idx = -1

            t_damp = t[enter_idx]
            self.create_time_line(axes, t, y, t_damp, r"$T_{\epsilon}$")
            output.update({"t_damp": t_damp})
        except IndexError:
            output.update({"t_damp": None})

        # create epsilon tube
        upper_bound_line = Line([0, t[-1]], [yd + self.eps, yd + self.eps],
                                ls="--",
                                c=self.line_color)
        axes.add_line(upper_bound_line)
        lower_bound_line = Line([0, t[-1]], [yd - self.eps, yd - self.eps],
                                ls="--",
                                c=self.line_color)
        axes.add_line(lower_bound_line)

        # calc stationary control deviation
        control_deviation = y[-1] - yd
        output.update({"stationary_error": control_deviation})
        # check for sim success
        if not data["results"]["finished"]:
            for key in output.keys():
                output[key] = None

        # add settings and metrics to dictionary results
        results = {}
        y_des = np.ones_like(y) * yd
        step_width = 1 / data["modules"]["Solver"]["measure rate"]
        results.update(
            {"metrics": self.calc_metrics(y, y_des, step_width, output)})
        results.update({"modules": data["modules"]})

        canvas = FigureCanvas(fig)

        self.write_output_files(data["regime name"], fig, results)

        return [
            dict(name='_'.join([data["regime name"], self.name]),
                 figure=canvas)
        ]