示例#1
0
#!/usr/bin/env python

from matplotlib import matlab

data = ((3, 1000), (10, 3), (100, 30), (500, 800), (50, 1))

matlab.xlabel("FOO")
matlab.ylabel("FOO")
matlab.title("Testing")
matlab.gca().set_yscale('log')

dim = len(data[0])
w = 0.75
dimw = w / dim

x = matlab.arange(len(data))
for i in range(len(data[0])):
    y = [d[i] for d in data]
    b = matlab.bar(x + i * dimw, y, dimw, bottom=0.001)
matlab.gca().set_xticks(x + w / 2)
matlab.gca().set_ylim((0.001, 1000))

matlab.show()
示例#2
0
#!/usr/bin/env python

from matplotlib import matlab

data = ((3,1000), (10,3), (100,30), (500, 800), (50,1))

matlab.xlabel("FOO")
matlab.ylabel("FOO")
matlab.title("Testing")
matlab.gca().set_yscale('log')

dim = len(data[0])
w = 0.75
dimw = w / dim

x = matlab.arange(len(data))
for i in range(len(data[0])) :
    y = [d[i] for d in data]
    b = matlab.bar(x + i * dimw, y, dimw, bottom=0.001)
matlab.gca().set_xticks(x + w / 2)
matlab.gca().set_ylim( (0.001,1000))

matlab.show()


示例#3
0
    """Load Nicolet BMSI data."""
    if tmin < 0: tmin = 0
    fh = file(filename, 'rb')
    indmin = Fs * tmin
    numsamples = os.path.getsize(filename) / (channels * 2)
    indmax = min(numsamples, Fs * tmax)

    byte0 = int(indmin * channels * 2)
    numbytes = int((indmax - indmin) * channels * 2)

    fh.seek(byte0)
    data = fromstring(fh.read(numbytes), Int16).astype(Float)
    data.shape = -1, channels

    t = (1 / Fs) * arange(indmin, indmax)

    return t, data


t, data = read_nicolet(0, 10)

x = data[:, 5]

Pxx, freqs, t = specgram(x, NFFT=512, Fs=Fs, noverlap=412)

T, F = meshgrid(t, freqs)
pcolor(T, F, 10 * log10(Pxx), shading='flat')
set(gca(), 'ylim', [0, 100])
#print Pxx.shape, freqs.shape, t.shape
show()
示例#4
0
    indmax = min(numsamples, Fs*tmax)



    byte0 = int(indmin*channels*2)
    numbytes = int( (indmax-indmin)*channels*2 )

    fh.seek(byte0)
    data = fromstring(fh.read(numbytes), Int16).astype(Float)
    data.shape = -1, channels



    t = (1/Fs)*arange(indmin, indmax)

    return t, data



t, data = read_nicolet(0,10)

x = data[:,5] 

Pxx, freqs, t = specgram(x, NFFT=512, Fs=Fs, noverlap=412)

T, F = meshgrid(t,freqs)
pcolor(T, F, 10*log10(Pxx), shading='flat')
set(gca(), 'ylim', [0,100])
#print Pxx.shape, freqs.shape, t.shape
show()