示例#1
0
def task2():
    x = mlab.frange(-1, 1, 0.1)
    pylab.grid(True)
    for i in range(len(x) - 1):
        a = x[i]
        b = x[i + 1]
        x_local = mlab.frange(a, b, 0.01)
        y_local = [hermit(j, a, b, f(a), f(b), df(a), df(b)) for j in x_local]
        pylab.plot(x_local, y_local)
示例#2
0
 def _genticks(self, ta, precis='h'):
     '''Generating ticks and labels according to GMT time from unix time
     data, ta. One can set major and minor ticks via precis. '''
     if precis[0] == 'h':
         mods = [12, 6, 4, 3, 2, 1]
         t = [0] * 51
         # 4 ticks per inch is OK!
         while len(t) > 4 * self._req.figsize[0] and len(mods):
             mm = mods.pop()
             gm_1hour = tmu.upper_hour(ta[0], mod=mm)
             t = map(int, list(frange(gm_1hour, ta[-1], 3600 * mm)))
         if precis[1] == '0':
             zers = []
             for tt in t:
                 if time.localtime(tt).tm_hour == 0:
                     zers.append(t.index(tt))
             while len(zers):
                 t.pop(zers.pop())
         if len(t) > 4 * self._req.figsize[0]:
             l = [''] * len(t)
         else:
             l = [time.strftime('%H', time.localtime(int(ii))) for ii in t]
     elif precis[0] == 'd':
         if precis[1] == 'c':  # at the center of a day
             gm_1day = tmu.upper_day(ta[0])
             gm_1day = gm_1day - 12 * 3600 if gm_1day - 12 * 3600 > ta[
                 0] else gm_1day + 12 * 3600
             fmt = '%d.%m'
         elif precis[1] == 'l':
             gm_1day = tmu.upper_day(ta[0])
             fmt = '%d'
         else:
             AttributeError('Precise code %s is incorrect' % precis)
         print 'Building day ticks from ts.%d to ts.%d' % (ta[0], ta[-1])
         print 'First tick: %d' % gm_1day
         skip_days = 1
         while (ta[-1] -
                gm_1day) / 3600. / 24. / skip_days > self._req.figsize[0]:
             skip_days += 1
             #TODO: and something more curious!
         print 'DAYS skipping: %d days at %d inches' % (
             skip_days, self._req.figsize[0])
         t = map(int, list(frange(gm_1day, ta[-1],
                                  (3600 * 24 * skip_days))))
         if len(t) > 0:
             if t[-1] > ta[-1]:
                 t.pop()
             l = [time.strftime(fmt, time.localtime(int(ii))) for ii in t]
             print t, l
         else:
             # at least one tick :-)
             t = [(ta[0] + ta[1]) / 2.]
             l = [time.strftime(fmt, time.localtime(ta[0]))]
     else:
         raise NotImplementedError('Precis type ``%s'' not implemented' \
                 % precis)
     return t, l
示例#3
0
 def plot(self, policy):
     rows = len(policy)
     cols = len(policy[0])
     
     X,Y = meshgrid(range(rows), range(cols))
     
     # U, V give the x and y components of the arrow vectors
     U = [[0]*cols for _ in range(rows)]
     V = [[0]*cols for _ in range(rows)]
     
     for row,r in enumerate(policy):
         for col,c in enumerate(r):
             a = c[0]
             if a == 'N':
                 U[row][col] = 0
                 V[row][col] = 1
             elif a == 'S':
                 U[row][col] = 0
                 V[row][col] = -1
             elif a == 'E':
                 U[row][col] = 1
                 V[row][col] = 0
             elif a == 'W':
                 U[row][col] = -1
                 V[row][col] = 0
             else:
                 raise ValueError
                 
     ax = self.fig.add_subplot(111)
     ax.quiver(X, Y, U, V, pivot='middle')
     ax.grid(linestyle='-')
     ax.set_xticks(frange(0.5, cols))
     ax.set_yticks(frange(0.5, rows))
     ax.set_xticklabels([])
     ax.set_yticklabels([])
     
     xmin, xmax, ymin, ymax = ax.axis()
     ax.axis([xmin-0.5, xmax-1, ymin-0.5, ymax-1])
     
     if self.world:
         #map = 
         cdict = {'blue': ((0.0, 0.2, 0.2),
                           (0.25, 1, 1),
                           (1.0, 0, 0)),
                           
                  'green': ((0.0, 0.2, 0.2),
                            (0.25, 1, 1),
                            (1.0, 1, 1)),
                            
                   'red': ((0.0, 0.2, 0.2),
                           (0.25, 1, 1),
                           (1.0, 0, 0)) }
         
         cmap = LinearSegmentedColormap('fudge', cdict)
         
         ax.imshow(self.world, cmap=cmap, interpolation='nearest')
示例#4
0
def Draw(func1, func2):
    # генирация точек графиков
    xlist = mlab.frange(a, b, 0.01)
    ylist = [func1(x) for x in xlist]
    ylist2 = [func2(x) for x in xlist]
    # Генирирум ось
    y0 = [0 for x in xlist]

    #############################################################
    max1Y = max(ylist)
    min1Y = min(ylist)
    max2Y = max(ylist2)
    min2Y = min(ylist2)
    minmaxarrayY = []
    minmaxarrayX = []
    for i in range(len(ylist)):
        if ((max1Y == ylist[i]) or (min1Y == ylist[i])):
            minmaxarrayY.append(ylist[i])
            minmaxarrayX.append(xlist[i])

    for i in range(len(ylist2)):
        if ((max2Y == ylist2[i]) or (min2Y == ylist2[i])):
            minmaxarrayY.append(ylist2[i])
            minmaxarrayX.append(xlist[i])

    ################################################################
    extremumX, extremumY = converter(korn, 0, 3, 4, func1)
    inflectionX, inflectionY = converter(korn1, 0, 3, 4, func1)
    kornsX, kornsY = converter(table, 1, 3, 4, func1)

    pylab.plot(extremumX, extremumY, 'go', label='extremum', color='red')
    pylab.plot(inflectionX, inflectionY, 'go', label='inflection point', color='yellow')
    pylab.plot(minmaxarrayX, minmaxarrayY, 'go', label='min/max', color='green')
    pylab.plot(kornsX, kornsY, 'go', label='Korn', color='black')

    pylab.plot(xlist, ylist, label='$sin(x)/x$')
    pylab.plot(xlist, y0, color='pink')
    pylab.plot(xlist, ylist2, label='$0.02*x* x - 4$', color='pink')
    pylab.legend()

    # Включаем рисование сетки
    pylab.grid(True)
    xlist1 = mlab.frange(float(table2[0][3]), float(table2[len(table2) - 1][3]), 0.01)
    pylab.fill_between(xlist1, [func1(x) for x in xlist1], [func2(x) for x in xlist1], color='green', alpha=0.25)
    # если мало разбиений, то переопереляем сетку под шаг
    if ((round((b - a) / h)) < 25):
        pylab.xticks([a + i * h for i in range(round((b - a) / h) + 1)])

    print()
    print()
    print("Минимумы и максимумы:")
    print("X", "Y", sep="\t")
    for i in range(len(minmaxarrayY)):
        print('{:3.5g}'.format(minmaxarrayX[i]), '{:3.5g}'.format(minmaxarrayY[i]), sep='\t\t')
    # Рисуем фогрму с графиком
    pylab.show()
示例#5
0
def search_best_parameter(filename):
    a, b, y_title, x_title, table = filehandling.bonus_file_handling(filename)

    b_range = frange(b[0], b[1], b[2])
    a_range = frange(a[0], a[1], a[2])

    # Calculate chi for each pair of values.
    chi_values = []
    for b_value in b_range:
        for a_value in a_range:
            chi_values.append([
                b_value, a_value,
                fitgui.bonus_chi_squared(table, my_function,
                                         (0, a_value, b_value))
            ])

    # Minimize chi
    best = chi_values[0]
    for b_value, a_value, chi in chi_values:
        if (chi < best[2]):
            best = (b_value, a_value, chi)

    print(
        output_format.format(a_value=best[1],
                             a_error=a[2],
                             b_value=best[0],
                             b_error=b[2],
                             chi_squared=best[2],
                             chi_reduced=fitgui._chi_reduced(
                                 best[2], len(table["x"]))))

    # Create graph.
    pyplot.figure()
    pyplot.title("Generated custom fit")
    pyplot.ylabel("chi2(a,b = {best_b})".format(best_b=best[0]))
    pyplot.xlabel('a')

    # Set data and graph.
    plot_fitted_graph(min(table["x"]),
                      max(table["x"]), (0, best[1], best[0]),
                      my_function,
                      c="blue")
    plot_data_points(table)

    a_values = [a for (b, a, chi) in chi_values if b == best[0]]
    chi_values = [chi for (b, a, chi) in chi_values if b == best[0]]
    slope = (max(chi_values) - min(chi_values)) / (max(a_values) -
                                                   min(a_values))
    intercept = max(chi_values) + (slope * max(a_values))

    # save and show bonus function
    save_graph("numeric_sampling")
    pyplot.show()
示例#6
0
    def plot(self, policy):
        rows = len(policy)
        cols = len(policy[0])

        X, Y = meshgrid(range(rows), range(cols))

        # U, V give the x and y components of the arrow vectors
        U = [[0] * cols for _ in range(rows)]
        V = [[0] * cols for _ in range(rows)]

        for row, r in enumerate(policy):
            for col, c in enumerate(r):
                a = c[0]
                if a == 'N':
                    U[row][col] = 0
                    V[row][col] = 1
                elif a == 'S':
                    U[row][col] = 0
                    V[row][col] = -1
                elif a == 'E':
                    U[row][col] = 1
                    V[row][col] = 0
                elif a == 'W':
                    U[row][col] = -1
                    V[row][col] = 0
                else:
                    raise ValueError

        ax = self.fig.add_subplot(111)
        ax.quiver(X, Y, U, V, pivot='middle')
        ax.grid(linestyle='-')
        ax.set_xticks(frange(0.5, cols))
        ax.set_yticks(frange(0.5, rows))
        ax.set_xticklabels([])
        ax.set_yticklabels([])

        xmin, xmax, ymin, ymax = ax.axis()
        ax.axis([xmin - 0.5, xmax - 1, ymin - 0.5, ymax - 1])

        if self.world:
            #map =
            cdict = {
                'blue': ((0.0, 0.2, 0.2), (0.25, 1, 1), (1.0, 0, 0)),
                'green': ((0.0, 0.2, 0.2), (0.25, 1, 1), (1.0, 1, 1)),
                'red': ((0.0, 0.2, 0.2), (0.25, 1, 1), (1.0, 0, 0))
            }

            cmap = LinearSegmentedColormap('fudge', cdict)

            ax.imshow(self.world, cmap=cmap, interpolation='nearest')
示例#7
0
def box_grid(xlimp, ylimp):
    """box_grid   generate list of points on edge of box

    list = box_grid([xmin xmax xnum], [ymin ymax ynum]) generates a
    list of points that correspond to a uniform grid at the end of the
    box defined by the corners [xmin ymin] and [xmax ymax].
    """

    sx10 = frange(xlimp[0], xlimp[1], float(xlimp[1] - xlimp[0]) / xlimp[2])
    sy10 = frange(ylimp[0], ylimp[1], float(ylimp[1] - ylimp[0]) / ylimp[2])

    sx1 = np.hstack((0, sx10, 0 * sy10 + sx10[0], sx10, 0 * sy10 + sx10[-1]))
    sx2 = np.hstack((0, 0 * sx10 + sy10[0], sy10, 0 * sx10 + sy10[-1], sy10))

    return np.transpose(np.vstack((sx1, sx2)))
def box_grid(xlimp, ylimp):
    """box_grid   generate list of points on edge of box

    list = box_grid([xmin xmax xnum], [ymin ymax ynum]) generates a
    list of points that correspond to a uniform grid at the end of the
    box defined by the corners [xmin ymin] and [xmax ymax].
    """

    sx10 = frange(xlimp[0], xlimp[1], float(xlimp[1]-xlimp[0])/xlimp[2])
    sy10 = frange(ylimp[0], ylimp[1], float(ylimp[1]-ylimp[0])/ylimp[2])

    sx1 = np.hstack((0, sx10, 0*sy10+sx10[0], sx10, 0*sy10+sx10[-1]))
    sx2 = np.hstack((0, 0*sx10+sy10[0], sy10, 0*sx10+sy10[-1], sy10))

    return np.transpose( np.vstack((sx1, sx2)) )
示例#9
0
 def __init__(self, funct, xmin, xmax, dx, nx=False):
     self.xes = list(mlab.frange(xmin, xmax, dx))
     if nx != False:
         for m_y in nx:
             if m_y not in self.xes:
                 self.xes.append(m_y)
     self.yes = [funct(x) for x in self.xes]
示例#10
0
def main(args):
    # y = a*x + b

    x = frange(-1, 2, 0.15)

    # f(x) = x / (x+ 2) dla x > 0
    # f(x) = x * x/3 dla x > 0 i x < 1
    # f(x) = x / -3 dla x <= 0

    y = []

    for el in x:
        if el <= 0:
            y.append(el / -3)
        elif el < 1:
            y.append(el * el / 3)
        else:
            y.append(el / (el + 2))

    print(x)

    plt.plot(x, y)
    plt.title('Wykres f(x')
    plt.grid(True)
    plt.show()
    return 0
示例#11
0
def hw_6_2():
    D = []
    for i in range(10000):
        smp = np.random.uniform(0, 1, 50)
        stat = np.max(smp)
        D.append(stat)

    sample = np.random.uniform(0, 1, 50)
    bootstrap_D = do_bootstrap(sample, 10000, lambda array: np.max(array))

    xlist = mlab.frange(0, 1, 0.001)
    ylist = [magic(x) for x in xlist]

    # sns.distplot(D)
    # plt.hist(D, bin_number(10000), color='red', alpha=0.5)
    # plt.hist(bootstrap_D, bin_number(10000), color='blue', alpha=0.5)
    my_cdf(D, 'blue')
    my_cdf(bootstrap_D, 'red')
    plt.plot(xlist, ylist)


    print('Квантиль 0.025: ', find_quantile(bootstrap_D, 0.025))
    print('Квантиль 0.975: ', find_quantile(bootstrap_D, 0.975))
    print(se_boot(bootstrap_D))
    plt.show()
def showT():
    '''Utility function to show T distributions'''
    
    t = frange(-5, 5, 0.05)
    TVals = [1,5]
    
    normal = stats.norm.pdf(t)
    t1 = stats.t.pdf(t,1)
    t5 = stats.t.pdf(t,5)
    
    plt.plot(t,normal, '--',  label='normal')
    plt.plot(t, t1, label='df=1')
    plt.plot(t, t5, label='df=5')
    plt.legend()
        
    plt.xlim(-5,5)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    
    outDir = r'..\Images'
    outFile = 'dist_t.png'
    
    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)
    
    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    plt.close()
示例#13
0
def Draw(func1, func2):
    # генирация точек графика
    xlist = mlab.frange(a, b, 0.01)
    ylist = [func1(x) for x in xlist]
    ylist2 = [func2(x) for x in xlist]

    # Генирирум ось
    y0 = [0 for x in xlist]
    pylab.plot(xlist, ylist)
    #pylab.plot(xlist, y0, label='line1', color='blue')
    pylab.plot(xlist, ylist2, label='$sin(x)/x)$', color='red')
    pylab.legend()

    # Включаем рисование сетки
    pylab.grid(True)

    pylab.fill_between(xlist, ylist, ylist2, color='green', alpha=0.25)
    # если мало разбиений, то переопереляем сетку под шаг
    if ((round((b - a) / h)) < 25):
        pylab.xticks([a + i * h for i in range(round((b - a) / h) + 1)])
    # рисуем корни, промерка того что корень не содержит ошибок
    for i in range(1, len(table)):
        if (table[i][4] != ':-('):
            pylab.scatter(table[i][3], table[i][4])

    # Рисуем фогрму с графиком
    pylab.show()
示例#14
0
def showExp():
    '''Utility function to show exponential distributions'''

    t = frange(0, 3, 0.01)
    lambdas = [0.5, 1, 1.5]

    for par in lambdas:
        plt.plot(t,
                 stats.expon.pdf(t, 0, par),
                 label='$\lambda={0:3.1f}$'.format(par))
    plt.legend()

    plt.xlim(0, 3)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    plt.legend()

    outDir = r'..\Images'
    outFile = 'dist_exp.png'

    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)

    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    plt.close()
示例#15
0
 def integrate(func, mim_lim, max_lim, n):
     integral = 0.0
     step = (max_lim - mim_lim) / n
     for x in mlab.frange(mim_lim + step / 2, max_lim - step / 2, step):
         integral += step / 6 * (func(x - step / 2) + 4 * func(x) +
                                 func(x + step / 2))
     return integral
示例#16
0
def showT():
    '''Utility function to show T distributions'''

    t = frange(-5, 5, 0.05)
    TVals = [1, 5]

    normal = stats.norm.pdf(t)
    t1 = stats.t.pdf(t, 1)
    t5 = stats.t.pdf(t, 5)

    plt.plot(t, normal, '--', label='normal')
    plt.plot(t, t1, label='df=1')
    plt.plot(t, t5, label='df=5')
    plt.legend()

    plt.xlim(-5, 5)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')

    outDir = r'..\Images'
    outFile = 'dist_t.png'

    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)

    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    plt.close()
示例#17
0
def showChi2():
    '''Utility function to show Chi2 distributions'''

    t = frange(0, 8, 0.05)
    Chi2Vals = [1, 2, 3, 5]

    for chi2 in Chi2Vals:
        plt.plot(t, stats.chi2.pdf(t, chi2), label='k={0}'.format(chi2))
    plt.legend()

    plt.xlim(0, 8)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')

    outDir = r'..\Images'
    outFile = 'dist_chi2.png'

    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)

    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    plt.close()
示例#18
0
def shifted_normal():
    '''PDF, scatter plot, and histogram.'''
    # Generate the data
    # Plot a normal distribution: "Probability density functions"
    myMean = [0,0,0,-2]
    mySD2 = [0.2,1,5,0.5]
    t = frange(-5,5,0.02)
    sns.set_palette('husl', 4)
    for mu,sigma in zip(myMean, np.sqrt(mySD2)):
        y = stats.norm.pdf(t, mu, sigma)
        plt.plot(t,y, label='$\mu={0}, \; \t\sigma={1:3.1f}$'.format(mu,sigma))
    plt.legend()
    plt.xlim([-5,5])
    plt.title('Normal Distributions')
    outFile = 'Normal_Distribution_PDF.png'
    
    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)
    
    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    
    # Generate random numbers with a normal distribution
    myMean = 0
    mySD = 3
    numData = 500
    data = stats.norm.rvs(myMean, mySD, size = numData)
    plt.scatter(np.arange(len(data)), data)
    plt.title('Normally distributed data')
    plt.xlim([0,500])
    plt.ylim([-10,10])
    plt.show()
    plt.close()
示例#19
0
def showF():
    '''Utility function to show F distributions'''

    t = frange(0, 3, 0.01)
    d1s = [1, 2, 5, 100]
    d2s = [1, 1, 2, 100]

    for (d1, d2) in zip(d1s, d2s):
        plot(t, stats.f.pdf(t, d1, d2), label='F({0}/{1})'.format(d1, d2))
    plt.legend()

    plt.xlim(0, 3)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    plt.legend()

    outDir = r'..\Images'
    outFile = 'dist_f.png'

    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)

    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    plt.close()
def showChi2():
    '''Utility function to show Chi2 distributions'''
    
    t = frange(0, 8, 0.05)
    Chi2Vals = [1,2,3,5]
    
    for chi2 in Chi2Vals:
        plt.plot(t, stats.chi2.pdf(t, chi2), label='k={0}'.format(chi2))
    plt.legend()
        
    plt.xlim(0,8)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    
    outDir = r'..\Images'
    outFile = 'dist_chi2.png'
    
    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)
    
    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    plt.close()
def showF():
    '''Utility function to show F distributions'''
    
    t = frange(0, 3, 0.01)
    d1s = [1,2,5,100]
    d2s = [1,1,2,100]
    
    for (d1,d2) in zip(d1s,d2s):
        plot(t, stats.f.pdf(t, d1, d2), label='F({0}/{1})'.format(d1,d2))
    plt.legend()
        
    plt.xlim(0,3)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    plt.legend()
        
    outDir = r'..\Images'
    outFile = 'dist_f.png'
    
    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)
    
    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    plt.close()
def showExp():
    '''Utility function to show exponential distributions'''
    
    t = frange(0, 3, 0.01)
    lambdas = [0.5, 1, 1.5]
    
    for par in lambdas:
        plt.plot(t, stats.expon.pdf(t, 0, par), label='$\lambda={0:3.1f}$'.format(par))
    plt.legend()
        
    plt.xlim(0,3)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    plt.legend()
        
    outDir = r'..\Images'
    outFile = 'dist_exp.png'
    
    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)
    
    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    plt.close()
def shifted_normal():
    '''PDF, scatter plot, and histogram.'''
    # Generate the data
    # Plot a normal distribution: "Probability density functions"
    myMean = [0,0,0,-2]
    mySD2 = [0.2,1,5,0.5]
    t = frange(-5,5,0.02)
    sns.set_palette('husl', 4)
    for mu,sigma in zip(myMean, np.sqrt(mySD2)):
        y = stats.norm.pdf(t, mu, sigma)
        plt.plot(t,y, label='$\mu={0}, \; \t\sigma={1:3.1f}$'.format(mu,sigma))
    plt.legend()
    plt.xlim([-5,5])
    plt.title('Normal Distributions')
    outFile = 'Normal_Distribution_PDF.png'
    
    saveTo = os.path.join(outDir, outFile)
    plt.savefig(saveTo, dpi=200)
    
    print('OutDir: {0}'.format(outDir))
    print('Figure saved to {0}'.format(outFile))
    plt.show()
    
    # Generate random numbers with a normal distribution
    myMean = 0
    mySD = 3
    numData = 500
    data = stats.norm.rvs(myMean, mySD, size = numData)
    plt.scatter(np.arange(len(data)), data)
    plt.title('Normally distributed data')
    plt.xlim([0,500])
    plt.ylim([-10,10])
    plt.show()
    plt.close()
示例#24
0
def generate_heatmap_data(Tmin, Tmax, Smin, Smax, Lmin, Lmax, scale, log=True):
    data = dict()
    if log == True:
        Tmin, Tmax = np.log10(Tmin), np.log10(Tmax)
        Smin, Tmax = np.log10(Smin), np.log10(Smax)
    from matplotlib.mlab import frange
    print(Tmin, Tmax)
    for i, item in enumerate(frange(Tmin, Tmax, (Tmax - Tmin) / scale)):
        for j, jtem in enumerate(frange(Lmin, Lmax, (Lmax - Lmin) / scale)):
            for k, ktem in enumerate(frange(Smin, Smax,
                                            (Smax - Smin) / scale)):
                if log == True:
                    data[(i, j, k)] = tc_gelhar(10**(item), jtem, 10**(ktem))
                else:
                    data[(i, j, k)] = tc_gelhar(item, jtem, ktem)

    return data
示例#25
0
def plot(func):
    x_min = ARRAY_X[0]
    x_max = ARRAY_X[-1]
    dx = 0.001
    x_list = mlab.frange(x_min, x_max, dx)
    y_list = [func(arg) for arg in x_list]
    pylab.plot(x_list, y_list)
    pylab.show()
示例#26
0
def plot(a, b, c):
    x_min = ARGS[0]
    x_max = ARGS[-1]
    dx = 0.001
    x_list = mlab.frange(x_min, x_max, dx)
    y_list = [a * arg + b * math.exp(arg) + c for arg in x_list]
    pylab.scatter(ARGS, VALUES)
    pylab.plot(x_list, y_list)
    pylab.show()
def search_best_parameter(filename):
    a, b, y_title, x_title, table = filehandling.bonus_file_handling(filename)

    b_range = frange(b[0], b[1], b[2])
    a_range = frange(a[0], a[1], a[2])

    # Calculate the chi for each pair.
    chi_values = []
    for b_value in b_range:
        for a_value in a_range:
            chi_values.append([
                b_value, a_value,
                fitgui.bonus_chi_squared(table, myfunc, (0, a_value, b_value))
            ])

    # Find the best chi.
    best = chi_values[0]
    for b_value, a_value, chi in chi_values:
        if chi < best[2]:
            best = (b_value, a_value, chi)

    print(
        OUTPUT_FORMAT.format(a_value=best[1],
                             a_error=a[2],
                             b_value=best[0],
                             b_error=b[2],
                             chi_squared=best[2],
                             chi_reduced=fitgui._chi_reduced(
                                 best[2], len(table["x"]))))

    # Create graph.
    pyplot.figure()
    pyplot.title("Generated custom fit")
    pyplot.ylabel(y_title)
    pyplot.xlabel(x_title)

    # Set the data and graph.
    plot_fitted_graph(min(table["x"]),
                      max(table["x"]), (0, best[1], best[0]),
                      myfunc,
                      c="blue")
    plot_data_points(table)

    pyplot.show()
示例#28
0
 def __init__(self, name='drawSinus'):
     print name, 'started!\n'
     # Интервал изменения переменной по оси X
     self.xmin = -20.0
     self.xmax =  20.0
     # Шаг между точками
     self.dx = 0.01
     #Создадим список координат по оси X
     #на отрезке [-xmin; xmax], включая концы
     self.xlist = mlab.frange (self.xmin, self.xmax, self.dx)
示例#29
0
def task1():
    rndx = [-1, -0.5, 0, 0.5, 1]
    rndy = [random.uniform(0, 1) for i in range(5)]
    rndlagrx = mlab.frange(-1, 1, 0.01)
    rndlagry = [lagr1(x, rndx, rndy) for x in rndlagrx]
    pylab.subplot(2, 3, 1)
    pylab.title('1.1')
    pylab.grid(True)
    pylab.plot(rndlagrx, rndlagry, color='green')
    pylab.plot(rndx, rndy, 'go', color='red', marker='x')
示例#30
0
文件: lab2.py 项目: kapatejlb/math
def find_dots(x1, x2, n, x, q, f):
    h = (x2 - x1) / (n)
    print("h = " + str(h))

    xlist = mlab.frange(x1, x2, h)

    print("X's:")
    print(len(xlist))
    print(xlist)

    # y" = -(1 + x^2)y - 1
    # ay" + (1 + bx^2)y = -1

    yks = []
    for i in range(n + 1):
        yks.append(Symbol("y_d" + str(i + 1)))

    q = lambdify(x, q, 'numpy')
    f = lambdify(x, f, 'numpy')
    system = []

    # for i in range(n - 2):
    #     system.append((yks[i + 2] - 2 * yks[i + 1] + yks[i])/(h**2) - q(xlist[i + 1]) * yks[i + 1] - f(xlist[i + 1]))
    #     #system.append(yks[i] - (2 + h ** 2 * q(xlist[i + 1])) * yks[i + 1] + yks[i + 2] - h ** 2 * f(xlist[i + 1]))
    #^^^^^деление на нолb
    k = 1
    while k != n:
        system.append(yks[k - 1] - (2 - h**2 * q(xlist[k])) * yks[k] +
                      yks[k + 1] - f(xlist[k]) * h**2)
        k += 1

    print("\nGain system:")
    for el in system:
        print(el)

    system[0] = system[0].subs(yks[0], 0)
    system[-1] = system[-1].subs(yks[-1], 0)
    print("\nThen we substitute the boundary points and get solvable system :")
    for el in system:
        print(el)

    coeffs = linsolve(system, yks[1:n])
    coeffs = next(iter(coeffs))
    print("\nAnswer:")
    print(coeffs)

    ylist = [0]
    for el in coeffs:
        ylist.append(el)
    ylist.append(0)

    print("\nYk's :")
    print(ylist)

    return xlist, ylist
示例#31
0
 def run(self, c, path):
     # c = "LSKETH"
     with open(path + c + ".log", "w") as f:
         print(str(self.start_date) + " " + str(self.stop_date))
         time_delta = self.MAX_STEP * self.tickers["1m"]
         time_spans = frange(self.start_date, self.stop_date, time_delta)
         for index, span in enumerate(time_spans):
             print("loop " + str(index) + "/" + str(len(time_spans)))
             data = Stock.get_klines(c, "1m", span)
             for e in data:
                 f.write(str(e) + "\n")
             f.flush()
示例#32
0
def skewness(ax):
    '''Normal and skewed distribution'''
    
    t = frange(-6,10,0.1) # generate the desirded x-values
    normal = stats.norm.pdf(t,1,1.6)   
    chi2 = stats.chi2.pdf(t,3)
    
    ax.plot(t, normal, '--', label='normal')
    ax.plot(t, chi2, label='positive skew')
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
    ax.legend()
示例#33
0
def Shooting(N):
    y0 = 0
    x0 = 0
    h = 1 / N
    xlist = mlab.frange(0, 1, h)

    #описание метода
    def RungeKutta(f, x, y):
        def k1():
            return h * f(x, y)

        def k2():
            return h * f(x + h / 2, y + k1() / 2)

        def k3():
            return h * f(x + h / 2, y + k2() / 2)

        def k4():
            return h * f(x + h, y + k3())

        return y + 1 / 6 * k1() + 2 / 6 * k2() + 2 / 6 * k3() + 1 / 6 * k4()

    #решение краевой задачи не зависит от параметра, поэтому вынес из цикла
    u = 0
    w = 1

    def difw(x, y):
        return u

    def difu(x, y):
        return w

    for i in range(N):
        w = RungeKutta(difw, x0 + i * h, w)
        u = RungeKutta(difu, x0 + i * h, u)
    #решение основной задачи
    def dify(x, y):
        return z

    def difz(x, y):
        return dif2y(x, y)

    for i in range(N + 1):
        y = y0
        z = -3.1
        ylist = [y0]
        for j in range(N):
            z = RungeKutta(difz, x0 + j * h, z)
            y = RungeKutta(dify, x0 + j * h, y)
            ylist.append(y)
        y0 = y0 - (y - math.e - 1 / math.e + 2) / w
    return plt.plot(xlist, ylist)
示例#34
0
    def __call__(self):
        'Return the locations of the ticks'

        self.verify_intervals()

        vmin, vmax = self.viewInterval.get_bounds()
        if vmax<vmin:
            vmin, vmax = vmax, vmin
        vmin = self._base.ge(vmin)

        locs =  frange(vmin, vmax+0.001*self._base.get_base(), self._base.get_base())

        return locs
示例#35
0
文件: lab1.py 项目: kapatejlb/math
def plot_graphic(linear_combination, x, xmin, xmax, dx):
    f = lambdify(x, linear_combination, 'numpy')
    # xmin = -10000
    # xmax = 10000
    # dx = 0.1
    xlist = mlab.frange(xmin, xmax, dx)
    ylist = [f(x) for x in xlist]
    # pylab.plot(xlist, ylist)
    #
    # pylab.axhline(0, color='black')
    # pylab.axvline(0, color='black')
    # pylab.show()
    return xlist, ylist
示例#36
0
    def __call__(self):
        'Return the locations of the ticks'

        self.verify_intervals()

        vmin, vmax = self.viewInterval.get_bounds()
        if vmax<vmin:
            vmin, vmax = vmax, vmin
        vmin = self._base.ge(vmin)

        locs =  frange(vmin, vmax+0.001*self._base.get_base(), self._base.get_base())

        return locs
示例#37
0
def test():
    min, max, dx = 0, 16, 0.01

    for d in containerDot:
        a = listA(d)
        b = listB(d)
        h = np.linalg.solve(a, b)
        h = list(h)
        xlist = mlab.frange(min, max, dx)
        ylist = [f(x) for x in xlist]
        yrlist = [g(x, h) for x in xlist]
        pylab.plot(xlist, yrlist)
        pylab.plot(xlist, ylist)
        pylab.show()
示例#38
0
def test():
    min, max, dx = 0, 16, 0.01

    for d in containerDot:
        a = listA(d)
        b = listB(d)
        h = np.linalg.solve(a, b)
        h = list(h)
        xlist = mlab.frange(min, max, dx)
        ylist = [f(x) for x in xlist]
        yrlist = [g(x, h) for x in xlist]
        pylab.plot(xlist, yrlist)
        pylab.plot(xlist, ylist)
        pylab.show()
示例#39
0
def figure():
    def realfunction(x):
        return math.exp(x) * math.sin(x) - 1

    xlist = mlab.frange(bot, top, 0.001)
    ylist = [realfunction(x) for x in xlist]

    pylab.plot(xlist, ylist)
    # axis
    ax = pylab.gca()
    ax.axhline(y=0, color='k')
    ax.axvline(x=0, color='k')
    ax.set_ylim([-5, 5])
    pylab.show()
示例#40
0
def func(x, d_lambda, n):
    mass1 = []
    xlist = mlab.frange(1, 500, 1)
    w = complex(1, 0)
    fi = 2 * math.pi * d_lambda * math.sin(math.pi / 180.0 * x)
    for i in range(1, n + 1):
        x = complex(random.normalvariate(0, 10), random.normalvariate(0, 10))
    x2 = x * complex(math.cos(-math.pi / 4), math.sin(-math.pi / 4))
    e = x + w * x2
    w = w - 2 * 0.00005 * e * x2.conjugate()
    w = w + complex(math.cos(fi * (i - 1)), math.sin(fi * (i - 1)))
    a = abs(w)
    mass1.append(e * e.conjugate())
    return mass1
示例#41
0
def task():
    a = -1
    b = 1
    fa = random.uniform(-1, 1)
    fb = random.uniform(-1, 1)
    dfb = random.uniform(-1, 1)
    x = mlab.frange(-1, 1, 0.01)
    for i in range(2):
        for j in range(3):
            dfa = random.uniform(-1.0, 1.0)
            y = [hermit(i, a, b, fa, fb, dfa, dfb) for i in x]
            pylab.subplot(2, 3, i * 3 + j + 1)
            pylab.title('f\'(a)=%.2f  f\'(b) = %.2f' % (dfa, dfb))
            pylab.grid(True)
            pylab.plot(x, y)
示例#42
0
def CheckElevation(vec):
    #print vec
    step = 1.0/len(vec)
    vec_after_polyfit = createElevationVectorAfterPolyfit(mlab.frange(0,1-step,step),vec)
    vec_diff =  np.diff(np.array(vec_after_polyfit))
    elChange = vec_after_polyfit[-1] - vec_after_polyfit[1];
    if (elChange > ELEVATION_THRESHOLD):
        #print 'DOWN'
        if (mlab.find(vec_diff >= 0).size > VECTOR_SIZE*ELEVATION_TREND_PRECENT):
            return elChange,HAND_DOWN
    elif (elChange < -ELEVATION_THRESHOLD):
        #print 'UP'
        if (mlab.find(vec_diff <= 0).size > VECTOR_SIZE*ELEVATION_TREND_PRECENT):
            return elChange,HAND_UP
    return 0,HAND_UNKWON
示例#43
0
def kurtosis(ax):
    ''' Distributions with different kurtosis'''
    
    # Generate the data
    t = frange(-3,3,0.1) # generate the desirded x-values
    platykurtic = stats.laplace.pdf(t)
    
    wigner = np.zeros(np.size(t))
    wignerIndex = np.abs(t) <= 1
    wigner[wignerIndex] = 2/np.pi * np.sqrt(1-t[wignerIndex]**2)
    
    ax.plot(t, platykurtic, label='kurtosis=3')
    ax.plot(t, wigner, '--', label='kurtosis=-1')
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
    ax.legend()
示例#44
0
 def __call__ (self) :
     binner     = self.binner
     delta      = self.delta
     phase      = self.phase
     vmin, vmax = self.viewInterval
     wmin       = binner.value (vmin, False)
     wmax       = binner.value (vmax, False)
     if phase is not None :
         wmin -= (wmin % delta - phase)
     return \
         [ i for i in
             (   binner.index_f (v)
             for v in frange (wmin, wmax + 0.001 * delta, delta)
             )
         if vmin <= i <= vmax
         ]
def showChi2():
    '''Utility function to show Chi2 distributions'''
    
    t = frange(0, 8, 0.05)
    Chi2Vals = [1,2,3,5]
    
    for chi2 in Chi2Vals:
        plt.plot(t, stats.chi2.pdf(t, chi2), label='k={0}'.format(chi2))
    plt.legend()
        
    plt.xlim(0,8)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    
    outFile = 'dist_chi2.png'
    C2_8_mystyle.printout_plain(outFile)
def showExp():
    '''Utility function to show exponential distributions'''
    
    t = frange(0, 3, 0.01)
    lambdas = [0.5, 1, 1.5]
    
    for par in lambdas:
        plt.plot(t, stats.expon.pdf(t, 0, par), label='$\lambda={0:3.1f}$'.format(par))
    plt.legend()
        
    plt.xlim(0,3)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    plt.legend()
        
    outFile = 'dist_exp.png'
    C2_8_mystyle.printout_plain(outFile)
def showF():
    '''Utility function to show F distributions'''
    
    t = frange(0, 3, 0.01)
    d1s = [1,2,5,100]
    d2s = [1,1,2,100]
    
    for (d1,d2) in zip(d1s,d2s):
        plt.plot(t, stats.f.pdf(t, d1, d2), label='F({0}/{1})'.format(d1,d2))
    plt.legend()
        
    plt.xlim(0,3)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    plt.legend()
        
    outFile = 'dist_f.png'
    C2_8_mystyle.printout_plain(outFile)
def showWeibull():
    '''Utility function to show Weibull distributions'''
    
    t = frange(0, 2.5, 0.01)
    lambdaVal = 1
    ks = [0.5, 1, 1.5, 5]
    
    for k in ks:
        wd = stats.weibull_min(k)
        plt.plot(t, wd.pdf(t), label='k = {0:.1f}'.format(k))
        
    plt.xlim(0,2.5)
    plt.ylim(0,2.5)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.legend()
        
    outFile = 'Weibull_PDF.png'
    showData(outFile)
def shifted_normal():
    '''PDF and scatter plot'''
    
    # Plot 3 PDFs (Probability density functions) for normal distributions ----------
    
    # Select 3 mean values, and 3 SDs
    myMean = [0,0,0,-2]
    mySD = [0.2,1,5,0.5]
    t = frange(-5,5,0.02)
    
    # Plot the 3 PDFs, using the color-palette "hls"
    with sns.color_palette('hls', 4):
        for mu,sigma in zip(myMean, np.sqrt(mySD)):
            y = stats.norm.pdf(t, mu, sigma)
            plt.plot(t,y, label='$\mu={0}, \; \t\sigma={1:3.1f}$'.format(mu,sigma))
        
    # Format the plot
    plt.legend()
    plt.xlim([-5,5])
    plt.title('Normal Distributions')
    
    # Show the plot, and save the out-file
    outFile = 'Normal_Distribution_PDF.png'
    showData(outFile)
    
    # Generate random numbers with a normal distribution ------------------------
    myMean = 0
    mySD = 3
    numData = 500
    data = stats.norm.rvs(myMean, mySD, size = numData)
    
    # Plot the data
    plt.scatter(np.arange(len(data)), data)
    
    # Format the plot
    plt.title('Normally distributed data')
    plt.xlim([0,500])
    plt.ylim([-10,10])
    plt.show()
    plt.close()
def showT():
    '''Utility function to show T distributions'''
    
    t = frange(-5, 5, 0.05)
    TVals = [1,5]
    
    normal = stats.norm.pdf(t)
    t1 = stats.t.pdf(t,1)
    t5 = stats.t.pdf(t,5)
    
    plt.plot(t,normal, '--',  label='normal')
    plt.plot(t, t1, label='df=1')
    plt.plot(t, t5, label='df=5')
    plt.legend()
        
    plt.xlim(-5,5)
    plt.xlabel('X')
    plt.ylabel('pdf(X)')
    plt.axis('tight')
    
    outFile = 'dist_t.png'
    C2_8_mystyle.printout_plain(outFile)
示例#51
0
	def DrawPlot(self):
		from matplotlib import pyplot as plt
		from matplotlib.mlab import frange
		import numpy

		xBegin = -1
		xEnd   = 1

		xRange = frange(xBegin, xEnd, self._drawingStep)

		y1Points = [ self._f1(x) for x in xRange ]
		y2Points = [ self._f2(x) for x in xRange ]

		top,    = plt.plot(xRange, y1Points, color="red", linewidth=2.5)
		bottom, = plt.plot(xRange, y2Points, color="red", linewidth=2.5)

		plt.fill_between(xRange, y1Points, y2Points, color="red", alpha=0.25)

		plt.xlim(-2, 2)

		plt.title("♥")
		plt.show()
示例#52
0
文件: aprox2.py 项目: DSG888/SibSUTIS
for i in xrange(0, n):
	array_x_y[0] = [-3.,-2.,-1.,1.,2.,4.]
	array_x_y[1] = [-2.1,-1.,2.,2.,1.,-2.]

#for i in xrange(0, n):
array_x_y[0] = [-3.,-2.,0.,0.,0.,0.]
array_x_y[1] = [-2.,-1.,0.,0.,0.,0.]
array_x_y[2] = [-1.,2.,0.,0.,0.,0.]
array_x_y[3] = [1.,2.,0.,0.,0.,0.]
array_x_y[4] = [2.,1.,0.,0.,0.,0.]
array_x_y[5] = [4.,-2.,0.,0.,0.,0.]

from matplotlib import mlab

zlist = mlab.frange (-5, 5, 0.01)


res = get_coefficient(array_x_y)

import pylab
pylab.grid()

#pylab.plot(zlist, [f(x) for x in zlist ], label='График функции'.decode("utf8"))
pylab.plot(zlist, [approx_function(res, x/0.85)-2.1 for x in zlist ], label='Аппроксимация'.decode("utf8"))
#pylab.plot(glist, [approx_function(res,x) for x in glist ], "ro")
pylab.plot([-3.,-2.,-1.,1.,2.,4.], [-2.1,-1.,2.,2.,1.,-2.], "ro")

pylab.legend(loc='lower left').draggable()
pylab.show()
示例#53
0
文件: roots.py 项目: fraiden/Labs
__author__ = 'maxim'

from math import log
from math import cos
from math import sin
from matplotlib import mlab
import pylab as plt

e1, e2, e3 = 10 ** (-3), 10 ** (-6), 10 ** (-9)


x_min = 0.0
x_max = 10.0
n = 200
h = (x_max - x_min) / n
x = mlab.frange(x_min, x_max, h)
x1 = list(x)

fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

def f(z):
    return log(z ** 2 + 3 * z + 1) - cos(2 * z - 1)

y = map(lambda z: log(z ** 2 + 3 * z + 1) - cos(2 * z - 1), x)

def u(z):
    return (2 * z + 3) / (z ** 2 + 3 * z + 1) + 2 * sin(2 * z - 1)

# М Е Т О Д   Н Ь Ю Т О Н А
示例#54
0
文件: graph2.py 项目: Vaace/lab_work
import numpy as np
import math
import pylab
from matplotlib import mlab

tmin = -10
tmax = 10

dt = 0.01
tlist = mlab.frange(tmin, tmax, dt)

pylab.ion()

for i in range(100):
	xlist = [math.sin(t + i) for t in tlist]
	ylist = [math.cos(2*t) for t in tlist]
	pylab.clf()
	pylab.plot(xlist, ylist)
	pylab.draw()
	
pylab.close()	 
	

示例#55
0
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from __future__ import division
from matplotlib.artist import Artist
import matplotlib.mlab as mlab
import matplotlib.font_manager as fm
import matplotlib.colors as mc
import numpy as np
import colorsys

# from http://matplotlib.org/examples/pylab_examples/demo_agg_filter.html


plot_colors = [
    mc.rgb2hex(colorsys.hsv_to_rgb(x, 0.58, 1))
    for x in mlab.frange(0, 1, 0.05)
]
plot_colors = plot_colors[0::2] + plot_colors[1::2]


class FilteredArtistList(Artist):
    def __init__(self, artist_list, filter):
        self._artist_list = artist_list
        self._filter = filter
        Artist.__init__(self)

    def draw(self, renderer):
        renderer.start_rasterizing()
        renderer.start_filter()
        for a in self._artist_list:
            a.draw(renderer)
示例#56
0
文件: lab27.py 项目: keipa/bsuir-labs
# functii neprerivnoy sluchaynoy velichini
pyplot.subplot(1, 1, 1)
y1.sort()
F1 = [i / float(len(y1)) for i in xrange(len(y1))]
pyplot.title("exponential function with parameter lambda : {0} and volume sample : {1}".format(_lambda, len(y1)))
pyplot.plot(y1, F1)
pyplot.plot(x, F)
pyplot.show()

pyplot.subplot(1, 1, 1)
y2.sort()
F2 = [i / float(len(y2)) for i in xrange(len(y2))]
pyplot.title("exponential function with parameter lambda : {0} and volume sample : {1}".format(_lambda, len(y2)))
pyplot.plot(y2, F2)
pyplot.plot(x, F)

pyplot.show()

# kolmogorov kriterii soglasia
F1_teor = [1 - math.e ** (-_lambda * y1[i]) for i in xrange(len(y1))]
F2_teor = [1 - math.e ** (-_lambda * y2[i]) for i in xrange(len(y2))]
print math.sqrt(n) * max(abs(F2[i] - F2_teor[i]) for i in xrange(len(y2)))

x_min = 0.01
x_max = 0.99
dx = 0.01
xlist = frange(x_min, x_max, dx)
ylist = [st.norm.ppf((i + 1) / 2) * 2 * math.sqrt(D1) / math.sqrt(n - 1) for i in xlist]
pyplot.plot(xlist, ylist, 'b')
pyplot.show()
示例#57
0
文件: lab7.py 项目: fraiden/Labs
    return (exp(z) - exp(-z)) / 2.0


def ch(z):
    return (exp(z) + exp(-z)) / 2.0


def ch1(v1, v):
    return (exp(v1 - v) + exp(v - v1)) / 2.0

# Задание сетки по х
x_min = 0.0
x_max = 1.0
n = 20
h = (x_max - x_min) / n
x = mlab.frange(x_min, x_max, h)
N = len(x) - 1

# Задание сетки по t
t_min = 0.0
print("Хотите Задать Время Окончания Расчета (1/0) ?")
a = (input())
if a == 1:
    print("t_max = ")
    t_max = input()
if a == 0:
    t_max = 1.0


print("Хотите Задать Шаг ? (1/0)")
a = (input())
示例#58
0
        if (k & 1):
            res *= t
        k = k >> 1
        if k == 0:
            break
        t *= t
 
    return res

def bernulli(n, k, p0):
    koef = math.factorial(n) / ((math.factorial(k))*(math.factorial(n - k)))
    return koef * math.pow(p0, k) * math.pow(1 - p0, (n - k))

while j < len(n):
   i = math.floor((d[j] - 1)/2)
   s = i + 1
   summ = 0
   while s < n[j]:
       summ += bernulli(n[j], s, p0 = 0.01)
       s += 1
   result.append(summ)    
   j += 1
   
f1=open('./testfile.txt', 'w+')
print (result, f1)

xlist = mlab.frange (2, 24, 2)
ylist = result
pylab.plot (xlist, ylist)
pylab.show()