def my_Normalize(img): # convert into range of [0,1] min_val = np.min(img.ravel()) max_val = np.max(img.ravel()) output = (img.astype('float') - min_val) / (max_val - min_val) return output
def draw_single_cluster_plot(plotFilePath, dots): # print "# creating data from dots" X = [] Y = [] for x, y in dots: X.append(float(x)) Y.append(float(y)) nullfmt = NullFormatter() # no labels # print "# definitions for the axes" left, width = 0.1, 0.65 bottom, height = 0.1, 0.65 bottom_h = left_h = left + width + 0.02 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.2] rect_histy = [left_h, bottom, 0.2, height] # print "start with a rectangular Figure" plt.figure(1, figsize=(8, 8)) axScatter = plt.axes(rect_scatter) axHistx = plt.axes(rect_histx) axHisty = plt.axes(rect_histy) # print "# no labels" axHistx.xaxis.set_major_formatter(nullfmt) axHisty.yaxis.set_major_formatter(nullfmt) # print "# the scatter plot:" # axScatter.scatter(X, Y) axScatter.plot(X, Y, '.') # print "# now determine nice limits by hand:" # binwidth = 0.25 # nbBins = 60 # print " -1" # xymax = np.max( [np.max(np.fabs(X)), np.max(np.fabs(Y))] ) # xymin = np.min( [np.min(np.fabs(X)), np.min(np.fabs(Y))] ) xmax = np.max(X) ymax = np.max(Y) xmin = np.min(X) ymin = np.min(Y) # taille fixe sur les histo # xmin=0;xmax=score_max # ymin=0;ymax=rmsd_max # print xymax,xymin # print " -2" # lim = ( int(xymax/binwidth) + 1) * binwidth # print " -3" # axScatter.set_xlim( (-lim, lim) ) # axScatter.set_ylim( (-lim, lim) ) axScatter.set_xlim((xmin * .9, xmax * 1.1)) axScatter.set_ylim((ymin * .9, ymax * 1.1)) # print " -4" # bins = np.arange(-lim, lim + binwidth, binwidth) binwidth = (xmax * 1.1 - xmin * .9) / nbBins xBins = np.arange(xmin * .9, xmax * 1.1 + binwidth, binwidth) binwidth = (ymax * 1.1 - ymin * .9) / nbBins yBins = np.arange(ymin * .9, ymax * 1.1 + binwidth, binwidth) # print " -5" axHistx.hist(X, bins=xBins) # print " -6" axHisty.hist(Y, bins=yBins, orientation='horizontal') # print "making histograms" axHistx.set_xlim(axScatter.get_xlim()) axHisty.set_ylim(axScatter.get_ylim()) print "# save plot" plt.savefig(plotFilePath) plt.clf()
def plot_2D_and_histos(plotFilePath,dots,tag): idx=getTagIndex(tag) color=getTagColor(tag) print "# creating data from dots" X=[];Y=[] for d in dots : X.append(d[idx]);Y.append(d[-1]) nullfmt = NullFormatter() # no labels print "# definitions for the axes" left, width = 0.1, 0.65 bottom, height = 0.1, 0.65 bottom_h = left_h = left+width+0.02 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.2] rect_histy = [left_h, bottom, 0.2, height] print "start with a rectangular Figure" plt.figure(1, figsize=(8,8)) axScatter = plt.axes(rect_scatter) axHistx = plt.axes(rect_histx) axHisty = plt.axes(rect_histy) print "# no labels" axHistx.xaxis.set_major_formatter(nullfmt) axHisty.yaxis.set_major_formatter(nullfmt) print "# the scatter plot:" # axScatter.scatter(X, Y) axScatter.plot(X, Y,'.',color=color) print "# now determine nice limits by hand:" # binwidth = 0.25 # nbBins = 60 # print " -1" # xymax = np.max( [np.max(np.fabs(X)), np.max(np.fabs(Y))] ) # xymin = np.min( [np.min(np.fabs(X)), np.min(np.fabs(Y))] ) xmax = np.max(X); ymax = np.max(Y) xmin = np.min(X); ymin = np.min(Y) # print xymax,xymin # print " -2" # lim = ( int(xymax/binwidth) + 1) * binwidth # print " -3" # axScatter.set_xlim( (-lim, lim) ) # axScatter.set_ylim( (-lim, lim) ) axScatter.set_xlim( (xmin*.9, xmax*1.1) ) axScatter.set_ylim( (ymin*.9, ymax*1.1) ) # print " -4" # bins = np.arange(-lim, lim + binwidth, binwidth) binwidth = (xmax*1.1-xmin*.9) / nbBins xBins = np.arange(xmin*.9,xmax*1.1 + binwidth, binwidth) binwidth = (ymax*1.1-ymin*.9) / nbBins yBins = np.arange(ymin*.9,ymax*1.1 + binwidth, binwidth) # print " -5" axHistx.hist(X, bins=xBins, color = color) # print " -6" axHisty.hist(Y, bins=yBins, orientation='horizontal') print "making histograms" axHistx.set_xlim( axScatter.get_xlim() ) axHisty.set_ylim( axScatter.get_ylim() ) print "# save plot" plt.savefig(plotFilePath) plt.clf()
def initialize(self, image, customize=True, xlim=None, ylim=None, xlabel='', ylabel='', log=True, vmin=None, vmax=None, maxresolution=1280, **kwargs): '''Display one image, give user a chance to zoom in, and leave everything set for populating with later images.''' if customize | (xlim is None )| (ylim is None): self.xlim = [0, image.shape[1]] self.ylim = [0, image.shape[0]] else: self.xlim = xlim self.ylim = ylim zoomed = image[self.ylim[0]:self.ylim[1], self.xlim[0]:self.xlim[1]] # create the figure, using xlim and ylim to determine the scale of the figure plt.ion() # create an empty dictionary to store the axes objects self.ax = {} # calculate aspect ratio (y/x) self.ysize, self.xsize = self.ylim[1] - self.ylim[0], self.xlim[1] - self.xlim[0] aspect = np.float(self.ysize)/self.xsize # set up the geometry of the plotting figure, including the desired resolution, histograms, and space for labels scale = 7.5 dpi = maxresolution/np.maximum(scale, scale*aspect) margin = 0.07 histheight = 0.1 inflate = 2*margin + histheight +1 self.figure = plt.figure(figsize=(scale*inflate, scale*aspect*inflate), dpi=dpi) gs = plt.matplotlib.gridspec.GridSpec(2,2,width_ratios=[1,histheight], height_ratios=[histheight, 1], top=1-margin, bottom=margin, left=margin, right=1-margin, hspace=0, wspace=0) # define panes for the image, as well as summed x and y histogram plots self.ax['image'] = plt.subplot(gs[1,0]) self.ax['xhist'] = plt.subplot(gs[0,0], sharex=self.ax['image'] ) self.ax['yhist'] = plt.subplot(gs[1,1], sharey=self.ax['image'] ) self.ax['navigator'] = plt.subplot(gs[0,1]) # clear the axes labels for k in self.ax.keys(): plt.setp(self.ax[k].get_xticklabels(), visible=False) plt.setp(self.ax[k].get_yticklabels(), visible=False) # set default image display keywords self.imagekw = dict(cmap='gray',interpolation='nearest',extent=[0, self.xsize, 0, self.ysize], aspect='equal') # replace any of these, as defined through the input keywords for k in kwargs.keys(): self.imagekw[k] = kwargs[k] #if customize: # self.imagekw['aspect'] = 'auto' # set the default line plotting keywords self.linekw = dict(color='black', linewidth=1, alpha=0.5) # make sure the min and max values for the color scale are set if vmin is None: vmin = np.min(image) if vmax is None: vmax = np.max(image) self.vmin, self.vmax = vmin, vmax # keep track of whether we're using a log scale self.log = log # calculate summed histograms xhist = np.sum(zoomed, 0) yhist = np.sum(zoomed, 1) # readjust things if a log scale is set if self.log: zoomedtoplot = logify(zoomed) imagetoplot = logify(image) self.imagekw['vmin'] = np.log(np.maximum(vmin, 1)) self.imagekw['vmax'] = np.log(vmax) else: zoomedtoplot = zoomed imagetoplot = image self.imagekw['vmin'] = vmin self.imagekw['vmax'] = vmax # keep the navigator like the image, but adjust its extent back to the regular self.navigatorkw = self.imagekw.copy() self.navigatorkw['extent'] = [0,image.shape[1], 0, image.shape[0]] # keep track of the data that goes into each plot self.current = {} # plot the histograms, once zoomed in self.current['xhist'] = self.ax['xhist'].plot(np.arange(len(xhist)), xhist, **self.linekw)[0] self.current['yhist'] = self.ax['yhist'].plot(yhist, np.arange(len(yhist)), **self.linekw)[0] self.ax['xhist'].set_xlim(0, zoomed.shape[1]-1) self.ax['xhist'].set_ylim(vmin*zoomed.shape[0], vmax*zoomed.shape[0]) self.ax['yhist'].set_xlim(vmin*zoomed.shape[1], vmax*zoomed.shape[1]) self.ax['xhist'].set_yscale('log') self.ax['yhist'].set_xscale('log') self.ax['yhist'].set_ylim(0, zoomed.shape[0]-1) # plot the (zoomed) image self.current['image'] = self.ax['image'].imshow(zoomedtoplot, **self.imagekw) self.current['navigator'] = self.ax['navigator'].imshow(imagetoplot, **self.navigatorkw) self.current['rectangle'] = self.ax['navigator'].add_patch(plt.matplotlib.patches.Rectangle((self.xlim[0], self.ylim[0]), self.xlim[1] - self.xlim[0], self.ylim[1]-self.ylim[0], edgecolor='red', facecolor='none', alpha=0.5, linewidth=5)) self.speak('created new image and plots') if customize: self.name = self.input('Please zoom to desired limits, enter a label to identify this window, and press return:') xlim, ylim = np.array(self.ax['image'].get_xlim()), np.array(self.ax['image'].get_ylim()) xlim[0] = np.maximum(xlim[0], 0) ylim[0] = np.maximum(ylim[0], 0) xlim[1] = np.minimum(xlim[1], self.xsize) ylim[1] = np.minimum(ylim[1], self.ysize) self.initialize(image, customize=False, xlim=xlim, ylim=ylim, log=log, vmin=vmin, vmax=vmax, maxresolution=maxresolution, **kwargs) self.speak('the display has been fully initialized -- ready for new plots!')