示例#1
0
    def __init__(self, shape, scale=1):
        """ 
        Initalize a Warper with a reference shape with coordinates in the 
        numpy array 'shape'
        """
        xy = shape.copy() * scale
        self.scale = scale
        
        xy = self.shape_to_xy(xy)
            
        xy = xy - np.min(xy,axis=0)
        dt = scipy.spatial.Delaunay(xy)
        
        # Define a grid
        cols = int(np.ceil(np.max(xy[:,0])))
        rows = int(np.ceil(np.max(xy[:,1])))
        xx, yy = np.meshgrid(range(cols),range(rows))

        xy_grid = np.vstack((xx.flatten(),yy.flatten())).T        
        
        # Define a mask 
        mask = Path(xy).contains_points(xy_grid)
        self.mask = mask.reshape(xx.shape)
        xy_grid = xy_grid[mask==True,:] # Remove pts not inside mask
        
        # Calculate barycentric coordinates for all points inside mask
        simplex_ids = dt.find_simplex(xy_grid)
        bary_coords = points_to_bary(dt,simplex_ids,xy_grid)
        
        self.tri = dt.simplices
        self.warp_template = np.hstack((simplex_ids[:,np.newaxis],bary_coords))
示例#2
0
    def to_grid(self):
        """
        draw layout into a numpy array with indexes for
        https://stackoverflow.com/questions/3654289/scipy-create-2d-polygon-mask

        returns:
        -----
        np.array(self._size).ntype(int)
        """
        self._img_dict = {}
        nx, ny = self._size
        X = np.zeros((ny, nx))
        mul = 256 // (self.__len__() - 1)
        # xmn, ymn, xmx, ymx = self._problem.footprint.bounds
        scale = self.get_scale_for_size(nx, ny)
        x, y = np.meshgrid(np.arange(nx), np.arange(ny))
        x, y = x.flatten(), y.flatten()
        points = np.vstack((x, y)).T

        for i, room in enumerate(self.geoms):
            # generate color and add to dictionary
            icol = (i + 1) * mul
            self._img_dict = {room.name: icol}
            # create a patch on meshgrid
            vert = (np.array(list(room.exterior.coords)) * scale).astype(int)
            grid = Path(vert).contains_points(points, radius=0)
            grid = grid.reshape((ny, nx))
            X[grid] += icol
        return np.flipud(X)
示例#3
0
def write_mat(geoms, footprint, nx, ny):
    """ tensor of size [num_rooms, size omega.x, omega.y] """
    scale = get_scale_for_size(footprint, nx, ny)
    x, y = np.meshgrid(np.arange(nx), np.arange(ny))
    x, y = x.flatten(), y.flatten()
    points = np.vstack((x, y)).T
    X = np.zeros((len(geoms), nx, ny))
    for i, room in enumerate(geoms):
        vert = (np.array(list(room.exterior.coords)) * scale).astype(int)
        grid = Path(vert).contains_points(points, radius=0)
        grid = grid.reshape((ny, nx))
        X[i][grid] = 1.
    return np.flipud(X).copy()
示例#4
0
    def onLassoSelect(self, poly_verts):
        ny, nx = self.im.shape
        x, y = np.meshgrid(np.arange(nx), np.arange(ny))
        x, y = x.flatten(), y.flatten()

        points = np.vstack((x, y)).T

        mask = Path(poly_verts).contains_points(points)
        mask = mask.reshape((ny, nx))

        im = np.asarray(mpimg.imread(self.fns[self.i]), float)
        im[np.logical_not(mask)] = np.nan
        self.setimage(im)
示例#5
0
def drawmap(plots, boundary=None):
    fig = plt.figure()
    ax1 = fig.add_axes([0.1, 0.1, 0.8, 0.8])
    plt.title("科研楼出发省内X小时到达圈(高德)")

    bmap = Basemap(llcrnrlon=113,
                   llcrnrlat=24,
                   urcrnrlon=119,
                   urcrnrlat=30.5,
                   projection='mill',
                   resolution='l',
                   area_thresh=10000,
                   ax=ax1)
    bmap.readshapefile('gadm36_CHN_1', 'states', drawbounds=False)
    bmap.drawcountries()
    for info, shp in zip(bmap.states_info, bmap.states):
        if info['NAME_1'] in ['Jiangxi']:
            boundary = shp
        if info['NAME_1'] in [
                'Fujian', 'Hunan', 'Hubei', 'Guangdong', 'Anhui', 'Zhejiang'
        ]:
            ax1.add_patch(Polygon(shp, facecolor='w', edgecolor='b', lw=0.2))

    x, y = bmap(plots['经度'].values, plots['纬度'].values)
    mask = Path(boundary, closed=True).contains_points(
        pd.concat([pd.DataFrame(x), pd.DataFrame(y)], axis=1))

    X, Y = np.meshgrid(m, n)
    X, Y = bmap(X, Y)

    Z = (plots['驾车耗时'].values / 1800).astype(np.int64).reshape(X.T.shape).T
    mask = mask.reshape(X.T.shape).T
    Z = Z * mask
    maxcount = max(Z.flatten())
    mincount = min(Z.flatten())

    cs = bmap.contourf(X,
                       Y,
                       Z, [*range(mincount, maxcount + 1)],
                       cmap=plt.cm.jet)

    cbar = bmap.colorbar(cs)
    ticks = [str(i / 2.0) + "小时" for i in range(mincount, maxcount + 1)]
    cbar.set_ticklabels(ticks)
    cbar.set_ticks([*range(mincount, maxcount + 1)])
    fig.savefig('target.jpg',
                format='jpg',
                dpi=300,
                transparent=True,
                bbox_inches='tight',
                pad_inches=0)
示例#6
0
def polys_to_mask(mask_dict, coords, shape, radius=None, invert=False):
    """
    Converts a mask definition in terms of the underlying polygon to a True/False
    mask array using the coordinates and shape of the target data.

    This process "specializes" a mask to a particular shape, whereas masks given by
    polygon definitions are general to any data with appropriate dimensions, because
    waypoints are given in unitful values rather than index values.
    :param mask_dict:
    :param coords:
    :param shape:
    :param radius:
    :param invert:
    :return:
    """

    dims = mask_dict['dims']
    polys = mask_dict['polys']

    polys = [[[np.searchsorted(coords[dims[i]], coord) for i, coord in enumerate(p)] for p in poly] for poly in polys]

    mask_grids = np.meshgrid(*[np.arange(s) for s in shape])
    mask_grids = tuple(k.flatten() for k in mask_grids)

    points = np.vstack(mask_grids).T

    mask = None
    for poly in polys:
        grid = Path(poly).contains_points(points, radius=radius or 0)
        grid = grid.reshape(list(shape)[::-1]).T

        if mask is None:
            mask = grid
        else:
            mask = np.logical_or(mask, grid)

    if invert:
        mask = np.logical_not(mask)

    return mask
def fill_polygon_for_raster(perimeter,
                            rows=900,
                            cols=2160,
                            flip=True,
                            closing={
                                'close': False,
                                'struct': np.ones((4, 4))
                            }):
    '''Given the indices of the perimeter,
    returns the filled polygon (inclusive)

    Arguments:

    `perimeter`: points on perimeter (inorder preferable)

    `rows`: #rows

    `cols`: #columns

    `flip`: bool, flip final result

    `closing`: dict, required keys `'close'` (bool) & `'struct'` (2d iterable),
    perform binary closing on result
    '''
    xs_2d, ys_2d = np.meshgrid(np.arange(rows), np.arange(cols))
    xs_2d, ys_2d = xs_2d.flatten(), ys_2d.flatten()
    geo_points = np.vstack((xs_2d, ys_2d)).T

    grid = Path(perimeter).contains_points(geo_points)
    # np.flip(axis=0) to get [0,0] as top left point of raster
    grid = grid.reshape(cols, rows).T
    grid[([x for x, _ in perimeter], [y for _, y in perimeter])] = True
    if closing['close']:
        grid = binary_closing(grid, structure=closing['struct'])
    if flip:
        grid = np.flip(grid, 0)
    return grid
示例#8
0
文件: phot.py 项目: indebetouw/pyphot
    def setmask(self, im):
        """
        input an image (for now an HDU) and set self.mask to 
        an array the size of the image with the phot region =1
          and expanded background annulus =2
        for now we also create a mask the size of the image, so I recommend
          to extract a subimage and call this method with that input
        this method well trim the polyon to fit in the image
        """
        imshape = im.shape
        mask = pl.zeros(imshape)

        if self.type == "circle":
            x, y, r = self.imcoords(im)
            x0 = int(x)
            y0 = int(y)
            dx = x - x0
            dy = y - y0
            # grr pixel centers again - is this right?
            #            dx=dx-0.5; dy=dy-0.5

            bg0_r = self.imcoords(im, reg="bg0")[2]  #-0.2 # fudge
            bg1_r = self.imcoords(im, reg="bg1")[2]  #+0.2 # fudge
            bg1_r0 = int(pl.ceil(bg1_r))
            r2 = r**2
            bg0_r2 = bg0_r**2
            bg1_r2 = bg1_r**2
            for i in pl.array(range(2 * bg1_r0 + 1)) - bg1_r0:
                for j in pl.array(range(2 * bg1_r0 + 1)) - bg1_r0:
                    if y0 + j >= 0 and x0 + i >= 0 and y0 + j < (
                            imshape[0] - 1) and x0 + i < (imshape[1] - 1):
                        d2 = (1. * i - dx)**2 + (1. * j - dy)**2
                        # d2 = (i-x)**2 + (j-y)**2 -> (i-x0-(x-x0))**2 + ...
                        if d2 <= r2:
                            mask[y0 + j,
                                 x0 + i] = 1  # remember indices inverted
                        if d2 >= bg0_r2 and d2 <= bg1_r2:
                            mask[y0 + j,
                                 x0 + i] = 2  # remember indices inverted
#                        if x0+i==6:
#                           print i,j,x0+i,y0+j,dx,dy,d2,bg0_r2,bg1_r2

        elif self.type == "polygon":
            # turn annulus back into mask, will trim at edges of image
            from matplotlib.path import Path
            from matplotlib import __version__ as mpver
            v = mpver.split('.')
            if v[0] < 1:
                raise Exception(
                    "need matplotlib >=1.3.1, or tell remy to add fallback nxutils option for Path.contains_points"
                )
            elif v[1] < 3:
                raise Exception(
                    "need matplotlib >=1.3.1, or tell remy to add fallback nxutils option for Path.contains_points"
                )
            elif v[2] < 1:
                raise Exception(
                    "need matplotlib >=1.3.1, or tell remy to add fallback nxutils option for Path.contains_points"
                )

            # Create vertex coordinates for each grid cell
            x, y = pl.meshgrid(pl.arange(imshape[1]), pl.arange(imshape[0]))
            x, y = x.flatten(), y.flatten()
            points = pl.vstack((x, y)).T
            mask1 = Path(self.imcoords(im, reg="bg1")).contains_points(points)
            mask1 = mask1.reshape((imshape[0], imshape[1]))
            mask0 = Path(self.imcoords(im, reg="bg0")).contains_points(points)
            #,radius=1)
            mask0 = mask0.reshape((imshape[0], imshape[1]))
            mask = Path(self.imcoords(im, reg="ap")).contains_points(points)
            mask = mask.reshape((imshape[0], imshape[1]))

            mask = mask + (1 * mask1 - 1 * mask0) * 2
        else:
            raise Exception("unknown region type %s" % self.type)
        self.mask = mask
        return mask