示例#1
0
def repair(G, pheromone_add, pheromone_decay, explore_prob, explore2, strategy='rank',\
            num_ants=100, max_steps=1000, num_iters=1, print_graph=False, video=False, \
            nframes=-1, video2=False, cost_plot=False, backtrack=False, \
            decay_type='exp', node_queue_lim=1, edge_queue_lim=1, one_way=False):
    """ """
    
    graph_name = G.graph['name']
    nests = G.graph['nests']
    
    out_items = ['repair', strategy, graph_name, decay_type]
    if backtrack:
        out_items.append('backtrack')
    if one_way:
        out_items.append('one_way')
    out_str = '_'.join(out_items)
    
    def next_destination(origin):
        idx = nests.index(origin)
        idx += 1
        idx %= len(nests)
        return nests[idx]
    
    num_edges = G.size()
    
    nframes = min(nframes, max_steps)
    
    pher_str = "%d, %f, %f, " % (num_ants, explore_prob, pheromone_decay)
    data_file = open('ant_%s%d.csv' % (out_str, max_steps), 'a')
    pruning_file = open('ant_%s_pruning.csv' % out_str, 'a')
    critical_nodes_file = open('critical_nodes_%s.csv' % graph_name, 'w')

    if video:
        fig = PP.figure()
    
    init_path = G.graph['init_path']
    
    track_pruning = max_steps <= MAX_PRUNING_STEPS
    
    for iter in xrange(num_iters):    
        nonzero_edges = set()
        for u, v in G.edges():
            G[u][v]['weight'] = MIN_PHEROMONE
            G[u][v]['units'] = []
        for u, v in init_path:
            G[u][v]['weight'] += pheromone_add * INIT_WEIGHT_FACTOR
            if decay_type == 'linear':
                G[u][v]['units']+= [pheromone_add] * INIT_WEIGHT_FACTOR
            nonzero_edges.add(Ninv[(u, v)])
        clear_queues(G)
    
        if iter == 0 and print_graph:
            pass #color_graph(G, 'g', pheromone_thickness, "graph_before")
        print str(iter) + ": " + pher_str
        explore = defaultdict(bool)
        prevs = {}
        prevs2 = {}
        prevs3 = {}
        currs = {}
        paths = {}
        walks = {}
        destinations = {}
        origins = {}
        edge_weights = defaultdict(list)
        deadend = {}
        search_mode = defaultdict(lambda: False)
        costs = []
    
        path_counts = defaultdict(int)
        chosen_walk_counts = defaultdict(int)
        max_entropy = None
        max_walk_entropy = None
            
        connect_time = -1
    
        queued_nodes = set()
        queued_edges = set()

        max_cycles = 0
        curr_max_cycles = 0
        
        max_path_len = None
        
        max_chosen_path_len = None
        
        chosen_cycle_counts = []
        max_chosen_cycle_count = None
            
        for ant in xrange(num_ants):
            origin = nests[ant % len(nests)]
            origins[ant] = origin
            destinations[ant] = next_destination(origin)
            prev_curr = None
            if one_way:
                prev, curr = init_path[choice((len(init_path) // 2))]
            else:
                prev, curr = init_path[choice(len(init_path))]
            if random() <= 0.5:
                prev, curr = curr, prev
            
            paths[ant] = [prev, curr]
            if destinations[ant] in paths[ant]:
                origins[ant], destinations[ant] = destinations[ant], origins[ant]
            walks[ant] = [prev, curr]
            prevs[ant] = prev
            prevs2[ant] = None
            prevs3[ant] = None
            currs[ant] = curr
            deadend[ant] = False
            queue_ant(G, curr, ant)
            queued_nodes.add(curr)
    
        steps = 1
        rounds = 1
        max_weight = MIN_PHEROMONE
        unique_weights = set()
        max_cost = 0
        costs = []
        curr_path_entropy = None
        curr_walk_entropy = None
    
    
        for u, v in sorted(G.edges()):
            index = Ninv[(u, v)]
            wt = G[u][v]['weight']
            #unique_weights.add(wt)
            max_weight = max(max_weight, wt)
            if video:
                if wt <= MIN_DETECTABLE_PHEROMONE:
                    edge_weights[index].append(None)
                else:
                    edge_weights[index].append(wt)
    
        critical_edges_file = None
        if 'critical_node' in G.graph:
            critical_edges_file = open('critical_edges_%s.csv' % graph_name, 'a')
        while steps <= max_steps:               
            cost = pheromone_cost(G)
            max_cost = max(max_cost, cost)
            
            if cost_plot:
                costs.append(cost)
            
            prun_write_items = [steps, cost]
       
            if curr_path_entropy != None:
                prun_write_items.append(curr_path_entropy)
            else:
                prun_write_items.append('')
            
            if curr_walk_entropy != None:
                prun_write_items.append(curr_walk_entropy)
            else:
                prun_write_items.append('')
            
            prun_str = ', '.join(map(str, prun_write_items))
            
            if critical_edges_file != None:
                w1 = 0
                w2 = 0
                critical_node = G.graph['critical_node']
                critical_edge = G.graph['critical_edge']
                critical_node_prev = G.graph['critical_node_prev']
                for v in G.neighbors(critical_node):
                    if v == critical_node_prev:
                        continue
                    wt = G[critical_node][v]['weight']
                    if Ninv[(critical_node, v)] == Ninv[critical_edge]:
                        w1 += wt
                    else:
                        w2 += wt

                    
                critical_str = '%d, %f, %f\n' % (steps, w1, w2)
                critical_edges_file.write(critical_str)

            G2 = G.copy()
        
            empty_nodes = set()
            new_queue_nodes = set()
            moved_ants = set()
            
            empty_edges = set()
        
            updated_paths_ants = set()
            
            max_paths = maximal_paths(G, nests[0], nests[1])
            max_path_lengths = []
            for path in max_paths:
                path_prob = path_prob_no_explore(G, path, strategy)
                if path_prob > 0:
                    max_path_lengths.append(len(path))
                    
            mean_path_len = None
            if len(max_path_lengths) > 0:
                mean_path_len = mean(max_path_lengths)
            
            if mean_path_len != None:
                if max_path_len == None:
                    max_path_len = mean_path_len
                else:
                    max_path_len = max(max_path_len, mean_path_len)
            
            if DEBUG_QUEUES:
                check_queues(G2, queued_nodes, queued_edges, num_ants)
            
            for queued_node in queued_nodes:
                curr_max_cycles = len(maximal_cycles(G, queued_node))
                max_cycles = max(curr_max_cycles, max_cycles)

                queue = G2.node[queued_node]['queue']
                #queue = G2.node[node]['queue']
                #assert len(queue) > 0
            
                qlim = node_queue_lim
                if qlim == -1:
                    qlim = len(queue)
            
                next_ants = []
                q = 0
                while q < len(queue) and len(next_ants) < qlim:
                    if queue[q] not in moved_ants:
                        q_ant = queue[q]
                        next_ants.append(q_ant)
                    q += 1
                
            
                for next_ant in next_ants:
                    queue.remove(next_ant)

            
                for queued_ant in queue:
                    if queued_ant not in moved_ants:
                        moved_ants.add(queued_ant)
                        if video:
                            paths[queued_ant].append(queued_node)
                        if DEBUG_PATHS:
                            check_path(G, paths[queued_ant])
                        if track_pruning:
                            walks[queued_ant].append(queued_node)
                        #path = paths[queued_ant]
            
                if len(queue) == 0:
                    empty_nodes.add(queued_node)
            
                for next_ant in next_ants:
                    moved_ants.add(next_ant)          
            
                    curr = currs[next_ant]
                    prev = prevs[next_ant]
                    

                    if curr != origins[next_ant] and (not search_mode[next_ant])\
                                                 and pheromone_dead_end(G, curr, prev):
                        search_mode[next_ant] = True
            
                    n = list(G.neighbors(curr))
                    if curr != prev and prev != None:
                        n.remove(prev)
                    if len(n) == 0:
                        deadend[next_ant] = (curr not in nests)
                        #print curr, deadend[j]
                    elif len(n) > 1:
                        deadend[next_ant] = False
                
                    if (prev == curr) or (curr == origins[next_ant] and not search_mode[next_ant]):
                        prev = None

                    
                    exp_prob = explore_prob
                    if search_mode[next_ant]:
                        exp_prob = explore2              
                    elif (curr == origins[next_ant] and not search_mode[next_ant]):
                        exp_prob = 0
                    
                    
                    next, ex = next_edge(G, curr, exp_prob, strategy, prev, \
                                         destinations[next_ant], search_mode[next_ant],\
                                         backtrack)

                    if ex:
                        queue_ant(G2, curr, next_ant)
                        if not deadend[next_ant]:
                            add_amount = 2 * pheromone_add
                            if 'plant' in G.node[curr] and 'plant' in G.node[next]:
                                if G.node[curr]['plant'] != G.node[next]['plant']:
                                    add_amount *= 0.5
                            G2[curr][next]['weight'] += add_amount
                            if decay_type == 'linear':
                                G2[curr][next]['units'].append(add_amount)
                            nonzero_edges.add(Ninv[(curr, next)])
                        new_queue_nodes.add(curr)
                        empty_nodes.discard(curr)
                        prevs[next_ant] = curr
                        currs[next_ant] = curr
                        if video:
                            paths[next_ant].append(curr)
                        if track_pruning:
                            walks[next_ant].append(curr)
                        if DEBUG_PATHS:
                            check_path(G, paths[next_ant])
                    else:
                        if (curr, next) == G[curr][next]['forwards']:
                            G2[curr][next]['forwards_queue'].append(next_ant)
                        else:
                            G2[curr][next]['backwards_queue'].append(next_ant)
                        queued_edges.add(Ninv[(curr, next)])
                        
            queued_nodes.difference_update(empty_nodes)
            queued_nodes.update(new_queue_nodes)
            
            if DEBUG_QUEUES:
                check_queues(G2, queued_nodes, queued_edges, num_ants)
            
            for edge_id in queued_edges:
                u, v = N[edge_id]
                 
                resulting_size = 0
                for direction in ['forwards', 'backwards']:
                    i = 0
                    curr, next = G2[u][v][direction]
                    
                    if CRITICAL_NODES and 'critical_node' in G.graph:
                        if G.graph['critical_node'] in (u, v):
                            critical_nodes_file.write('%s, %s, %d\n' % (curr, next, steps))
                    
                    edge_queue = G2[u][v][direction + '_queue']
                    
                    eqlim = edge_queue_lim
                    if edge_queue_lim == -1:
                        eqlim = len(edge_queue)
                    while len(edge_queue) > 0 and i < eqlim:
                        next_ant = edge_queue.pop(0)
                        i += 1                     
                        queue_ant(G2, next, next_ant)
                        
                        new_queue_nodes.add(next)
                        empty_nodes.discard(next)
                        prevs[next_ant] = curr
                        currs[next_ant] = next
                        if not deadend[next_ant]:
                            add_amount = pheromone_add
                            if 'plant' in G.node[curr] and 'plant' in G.node[next]:
                                if G.node[curr]['plant'] != G.node[next]['plant']:
                                    add_amount *= 0.5
                            G2[curr][next]['weight'] += add_amount
                            if decay_type == 'linear':
                                G2[curr][next]['units'].append(add_amount)
                            nonzero_edges.add(Ninv[(curr, next)])
                        
                        if video:
                            paths[next_ant].append(next)
                        if track_pruning:
                            walks[next_ant].append(next)

                        if DEBUG_PATHS:
                            check_path(G, paths[next_ant])
        
        
                        if next == destinations[next_ant]:
                            orig, dest = origins[next_ant], destinations[next_ant]
                            dest = next_destination(orig)
                            origins[next_ant], destinations[next_ant] = dest, orig
                            search_mode[next_ant] = False
            
                            if track_pruning :
                                walk = walks[next_ant]
                                
                                if walk[0] == orig and walk[-1] == dest:
                                    chosen_walk_counts[tuple(walk)] += 1
                                    
                                    walk2 = remove_self_loops(walk)
                                    path, cycle_count = walk_to_path(walk2)
                                    start = path[0]
                                    end = path[-1]
                                    idx1 = nests.index(orig)
                                    idx2 = nests.index(dest)
                                    if idx2 > idx1:
                                        path = path[::-1]
                                    path_counts[tuple(path)] += 1
                
                                    curr_path_entropy = entropy(path_counts.values())
                                    curr_walk_entropy = entropy(chosen_walk_counts.values())
                
                                    if max_entropy == None:
                                        max_entropy = curr_path_entropy
                                    else:
                                        max_entropy = max(max_entropy, curr_path_entropy)
                    
                                    if max_walk_entropy == None:
                                        max_walk_entropy = curr_walk_entropy
                                    else:
                                        max_walk_entropy = max(max_walk_entropy, curr_walk_entropy)    
                                        
                                    mean_chosen_path_len = weighted_mean_path_len(path_counts)
                                    if max_chosen_path_len == None:
                                        max_chosen_path_len = mean_chosen_path_len
                                    else:
                                        max_chosen_path_len = max(max_chosen_path_len, mean_chosen_path_len)
                                        
                                    chosen_cycle_counts.append(cycle_count)
                                    mean_chosen_cycle_count = mean(chosen_cycle_counts)
                                    if max_chosen_cycle_count == None:
                                        max_chosen_cycle_count = mean_chosen_cycle_count
                                    else:
                                        max_chosen_cycle_count = max(max_chosen_cycle_count, mean_chosen_cycle_count)
                                    
            
                                walks[next_ant] = [origins[next_ant]]
                            
            
                        elif next == origins[next_ant]:
                            search_mode[next_ant] = True
                            
                    for j in xrange(len(edge_queue)):
                        next_ant = edge_queue[j]
                        if video:
                            paths[next_ant].append(curr)
                        if DEBUG_PATHS:
                            check_path(G, paths[next_ant])
                        walks[next_ant].append(curr)
                        resulting_size += 1
                
                if resulting_size == 0:
                    empty_edges.add(edge_id)
                        
            
            queued_nodes.difference_update(empty_nodes)
            queued_nodes.update(new_queue_nodes)
            queued_edges.difference_update(empty_edges)
            
            if DEBUG_QUEUES:
                check_queues(G2, queued_nodes, queued_edges, num_ants)
            
            decay_func = get_decay_func_edges(decay_type)
            zero_edges = decay_func(G2, nonzero_edges, pheromone_decay, time=1, min_pheromone=MIN_PHEROMONE)
            nonzero_edges.difference_update(zero_edges)
        
            G = G2
        
            for u, v in sorted(G.edges()):
                index = Ninv[(u, v)]
                wt = G[u][v]['weight']
                #unique_weights.add(wt)
                max_weight = max(max_weight, wt)
                if video:
                    if wt <= MIN_DETECTABLE_PHEROMONE:
                        edge_weights[index].append(None)
                    else:
                        edge_weights[index].append(wt)
        
            if connect_time == -1 and has_pheromone_path(G, nests[0], nests[1]):
                connect_time = steps
        
            steps += 1
    
        cost = 0
        max_wt = 0
        for u, v in G.edges():
            wt = G[u][v]['weight']
            if wt > MIN_PHEROMONE:
                cost += 1
            max_wt = max(wt, max_wt)
                            
        e_colors = edge_color[:]
        e_widths = edge_width[:]
        n_colors = node_color[:]
        n_sizes = node_size[:]
    
        for nest in nests:
            n_colors[Minv[nest]] = 'm'
            n_sizes[Minv[nest]] = 100
                            
        def init():
            nx.draw(G, pos=pos, with_labels=False, node_size=n_sizes, edge_color=e_colors,\
                    node_color=n_colors, width=e_widths, nodelist = sorted(G.nodes()), \
                    edgelist = sorted(G.edges()))
    
        def redraw(frame):
            PP.clf()
            print frame
        
            n_colors = ['r'] * len(node_color)
            n_sizes = [10] * len(node_size)
        
            ax = PP.gca()
        
            for n in xrange(num_ants):             
                node = paths[n][frame + 1]
                index = Minv[node]
                n_colors[index] = 'k'
                n_sizes[index] += ant_thickness
                                        
            #if frame > 0:
            #    frame -= 1
            max_units = max_weight / pheromone_add
        
            e_colors = []
            e_widths = []
            for u, v in sorted(G.edges()):
                index = Ninv[(u, v)]
                edge_wt = edge_weights[index][frame]
                if edge_wt == None:
                    e_colors.append('k')
                    e_widths.append(1)
                else:
                    e_colors.append('g')
                    e_widths.append(1 + 25 * (edge_wt / max_weight))
        
            for nest in nests:
                n_colors[Minv[nest]] = 'm'
                #n_sizes[Minv[nest]] = min(n_sizes[Minv[nest]], 100)
                #print nest, n_sizes[Minv[nest]]

            nx.draw(G, pos=pos, with_labels=False, node_size=n_sizes, edge_color=e_colors, \
                    node_color=n_colors, width=e_widths, nodelist = sorted(G.nodes()), \
                    edgelist = sorted(G.edges()))
            f = PP.draw()
            return f,
    
        if nframes == -1:
            nframes = steps
    
        if video:    
            ani = animation.FuncAnimation(fig, redraw, init_func=init, frames=nframes, \
                                          interval = FRAME_INTERVAL)
            mywriter = animation.AVConvWriter()
            ani.save("ant_" + out_str + str(iter) + ".mp4", writer=mywriter)
        
        if print_graph:        
            color_graph(G, 'g', (pheromone_add / max_wt), "graph_after_%s%d_e%0.2fd%0.2f" \
                        % (out_str, max_steps, explore_prob, pheromone_decay), cost)
            print "graph colored"
    
        costs.append(cost)
        max_cost = max(max_cost, cost)
        costs = PP.array(costs)
        cost_pruning = (max_cost - cost) / float(max_cost)
        if cost_plot:
            figname = "pruning/pruning_%s%d_e%0.2fd%0.2f" % (out_str, max_steps, \
                       explore_prob, pheromone_decay, cost)
            pruning_plot(costs, figname, max_cost)
                
        path_pruning = None  
        if len(path_counts) > 0:
            curr_path_entropy = entropy(path_counts.values())
            max_entropy = max(max_entropy, curr_path_entropy)
            path_pruning = max_entropy - curr_path_entropy
        
        walk_pruning = None
        if len(chosen_walk_counts) > 0:
            curr_walk_entropy = entropy(chosen_walk_counts.values())
            max_walk_entropy = max(max_walk_entropy, curr_walk_entropy)
            walk_pruning = max_walk_entropy - curr_walk_entropy

        # Output results.
        path_lengths, revisits = [], []
        right_nest, wrong_nest = 0.0, 0.0
        hit_counts, miss_counts = [], []
    
        nest, target = nests[0], nests[1]
            
        has_path = has_pheromone_path(G, nest, target)
        after_paths = []
        if has_path:
            if 'uniform' in strategy and UNIFORM_ENTROPY:
                after_paths = pheromone_paths(G, nest, target, MAX_PATH_LENGTH)
            else:
                after_paths = maximal_paths(pheromone_subgraph(G), nest, target)
        path_probs = []
    
        useful_edges = set()
        path_lenghts = []
        for path in after_paths:
            path_prob = path_prob_no_explore(G, path, strategy)
            if path_prob > 0:
                path_probs.append(path_prob)
                edges = path_to_edges(path)
                useful_edges.update(edges)
                path_lengths.append(len(path))
        wasted_edge_count, wasted_edge_weight = wasted_edges(G, useful_edges)

        #print sorted(path_probs)
        #print sum(path_probs)
    
        path_etr = None
        if len(path_probs) > 0:
            path_etr = entropy(path_probs)
            path_etr = np.abs(path_etr)
        else:
            has_path = False
            
        mean_path_len = None
        if len(path_lengths) > 0:
            #mean_path_len = mean(path_lengths)
            mean_path_len = PP.average(path_lengths, weights=path_probs)
            if 'uniform' in strategy:
                print "weighted mean path len", mean_path_len
            
        mean_chosen_path_len = weighted_mean_path_len(path_counts)
        
        mean_chosen_cycle_count = None
        if len(chosen_cycle_counts) > 1:
            mean_chosen_cycle_count = mean(chosen_cycle_counts)
            
        path_len_pruning = None
        if mean_path_len != None:
            if max_path_len != None:
                path_len_pruning = max_path_len - mean_path_len
                
        chosen_path_len_pruning = None
        if mean_chosen_path_len != None:
            if max_chosen_path_len != None:
                chosen_path_len_pruning = max_chosen_path_len - mean_chosen_path_len
                
        chosen_cycle_count_pruning = None
        if mean_chosen_cycle_count != None:
            if max_chosen_cycle_count != None:
                chosen_cycle_count_pruning = max_chosen_cycle_count - mean_chosen_cycle_count
        
        print "has path", has_path
        print "path entropy", path_etr
        
        journey_times = []
        journey_lengths = []
        walk_counts = defaultdict(int)
        total_steps = 0

        cycles_pruning = None
        if max_cycles > 0:
            cycles_pruning = max_cycles - curr_max_cycles
    
        header_items = []

        write_items = [int(has_path), cost]
    
        if (path_etr != None) and path_etr != float("-inf") and (not PP.isnan(path_etr)):
            assert path_etr >= 0
            write_items.append(path_etr)
        else:
            write_items.append('')
    
        if len(walk_counts.values()) > 0:
            write_items += [walk_entropy, mean_journey_time, med_journey_time, walk_success_rate]
        else:
            write_items += ['', '', '', '']
    
        #write_items.append(walk_success_rate)
    
        write_items.append(cost_pruning)
    
        if connect_time != -1:
            write_items.append(connect_time)
        else:
            write_items.append('')
    
        if path_pruning != None:
            write_items.append(path_pruning)
        else:
            write_items.append('')
        
        if curr_path_entropy != None:
            write_items.append(curr_path_entropy)
        else:
            write_items.append('')
     
        if walk_pruning != None:
            write_items.append(walk_pruning)
        else:
            write_items.append('')
        
        if curr_walk_entropy != None:
            write_items.append(curr_walk_entropy)
        else:
            write_items.append('')
        write_items += [wasted_edge_count, wasted_edge_weight]
        
        if mean_path_len != None:
            write_items.append(mean_path_len)
        else:
            write_items.append('')

        if cycles_pruning != None:
            write_items.append(cycles_pruning)
        else:
            write_items.append('')

        write_items.append(curr_max_cycles)
        
        if path_len_pruning != None:
            write_items.append(path_len_pruning)
        else:
            write_items.append('')
            
        if chosen_path_len_pruning != None:
            write_items.append(chosen_path_len_pruning)
        else:
            write_items.append('')
            
        if chosen_cycle_count_pruning != None:
            write_items.append(chosen_cycle_count_pruning)
        else:
            write_items.append('')
    
        ant_str = ', '.join(map(str, write_items))
        line = pher_str + ant_str + '\n'
        data_file.write(line)
        
    data_file.close()
    pruning_file.close()
    critical_nodes_file.close()
示例#2
0
def repair(G, pheromone_add, pheromone_decay, explore_prob, strategy='rank',\
            num_ants=100, max_steps=1000, num_iters=1, print_graph=False, video=False, \
            nframes=-1, cost_plot=False, backtrack=False, \
            decay_type='exp', node_queue_lim=1, edge_queue_lim=1, one_way=False):
    graph_name = G.graph['name']
    nests = G.graph['nests']
    
    out_items = ['repair', strategy, graph_name, decay_type]
    if backtrack:
        out_items.append('backtrack')
    if one_way:
        out_items.append('one_way')
    out_str = '_'.join(out_items)

    savedir = '%s/%s/%s' % (graph_name, strategy, decay_type)

    header_items = ['graph', 'strategy', 'decay type', 'ants', 'max steps',\
                    'backtrack', 'one_way', 'node queue lim', 'edge queue lim',\
                    'explore', 'decay']

    
    write_items = [graph_name, strategy, decay_type, num_ants, max_steps,\
                   backtrack, one_way, node_queue_lim, edge_queue_lim,\
                   explore_prob, pheromone_decay]
    
    def next_destination(origin):
        idx = nests.index(origin)
        idx += 1
        idx %= len(nests)
        return nests[idx]
    
    num_edges = G.size()
    
    nframes = min(nframes, max_steps)
    
    data_fname = '/iblsn/data/Arjun/Ants/ant_repair.csv'
    first_time = not os.path.exists(data_fname)
    
    if video:
        fig = PP.figure()
    
    init_path = G.graph['init path']
    
    track_pruning = max_steps <= MAX_PRUNING_STEPS
    
    for iter in xrange(num_iters):    
        nonzero_edges = set()
        for u, v in G.edges():
            G[u][v]['weight'] = MIN_PHEROMONE
            G[u][v]['units'] = []
        for u, v in init_path:
            G[u][v]['weight'] += pheromone_add * INIT_WEIGHT_FACTOR
            if decay_type == 'linear':
                G[u][v]['units']+= [pheromone_add] * INIT_WEIGHT_FACTOR
            nonzero_edges.add(Ninv[(u, v)])
        clear_queues(G)
    
        explore = defaultdict(bool)
        prevs = {}
        currs = {}
        paths = {}
        walks = {}
        destinations = {}
        origins = {}
        edge_weights = defaultdict(list)
        deadend = {}
        search_mode = defaultdict(lambda: False)
        costs = []
    
        path_counts = defaultdict(int)
        chosen_walk_counts = defaultdict(int)
        max_entropy = None
        max_walk_entropy = None
            
        connect_time = -1
    
        queued_nodes = set()
        queued_edges = set()

        max_cycles = 0
        curr_max_cycles = 0
        
        max_path_len = None
        
        max_chosen_path_len = None
        
        chosen_cycle_counts = []
        max_chosen_cycle_count = None
            
        curr_ants = num_ants
        if curr_ants == -1:
            curr_ants = max_steps // 10
            
        for ant in xrange(curr_ants):
            origin = nests[ant % len(nests)]
            origins[ant] = origin
            destinations[ant] = next_destination(origin)
            prev, curr = None, None
            if one_way:
                prev, curr = init_path[choice((len(init_path) // 2))]
            else:
                prev, curr = init_path[choice(len(init_path))]
            if random() <= 0.5:
                prev, curr = curr, prev
            
            paths[ant] = [prev, curr]
            if destinations[ant] in paths[ant]:
                origins[ant], destinations[ant] = destinations[ant], origins[ant]
            walks[ant] = [prev, curr]
            prevs[ant] = prev
            currs[ant] = curr
            deadend[ant] = False
            queue_ant(G, curr, ant)
            queued_nodes.add(curr)
    
        steps = 1
        rounds = 1
        max_weight = MIN_PHEROMONE
        unique_weights = set()
        max_cost = 0
        costs = []
        curr_path_entropy = None
        curr_walk_entropy = None
    
    
        for u, v in sorted(G.edges()):
            index = Ninv[(u, v)]
            wt = G[u][v]['weight']
            #unique_weights.add(wt)
            max_weight = max(max_weight, wt)
            if video:
                if wt <= MIN_DETECTABLE_PHEROMONE:
                    edge_weights[index].append(None)
                else:
                    edge_weights[index].append(wt)
    
        while steps <= max_steps:               
            cost = pheromone_cost(G)
            max_cost = max(max_cost, cost)
            
            G2 = G.copy()
        
            empty_nodes = set()
            new_queue_nodes = set()
            moved_ants = set()
            
            empty_edges = set()
        
            updated_paths_ants = set()
            
            max_paths = maximal_paths(G, nests[0], nests[1])
            max_path_lengths = []
            for path in max_paths:
                path_prob = path_prob_no_explore(G, path, strategy)
                if path_prob > 0:
                    max_path_lengths.append(len(path))
                    
            mean_path_len = None
            if len(max_path_lengths) > 0:
                mean_path_len = mean(max_path_lengths)
            
            if mean_path_len != None:
                if max_path_len == None:
                    max_path_len = mean_path_len
                else:
                    max_path_len = max(max_path_len, mean_path_len)
            
            if DEBUG_QUEUES:
                check_queues(G2, queued_nodes, queued_edges, curr_ants)
            
            for queued_node in queued_nodes:
                curr_max_cycles = len(maximal_cycles(G, queued_node))
                max_cycles = max(curr_max_cycles, max_cycles)

                queue = G2.node[queued_node]['queue']
                #queue = G2.node[node]['queue']
                #assert len(queue) > 0
            
                qlim = node_queue_lim
                if qlim == -1:
                    qlim = len(queue)
            
                next_ants = []
                q = 0
                while q < len(queue) and len(next_ants) < qlim:
                    if queue[q] not in moved_ants:
                        q_ant = queue[q]
                        next_ants.append(q_ant)
                    q += 1
                
            
                for next_ant in next_ants:
                    queue.remove(next_ant)
            
                for queued_ant in queue:
                    if queued_ant not in moved_ants:
                        moved_ants.add(queued_ant)
                        if video:
                            paths[queued_ant].append(queued_node)
                        if DEBUG_PATHS:
                            check_path(G, paths[queued_ant])
                        if track_pruning:
                            walks[queued_ant].append(queued_node)
            
                if len(queue) == 0:
                    empty_nodes.add(queued_node)
            
                for next_ant in next_ants:
                    moved_ants.add(next_ant)          
            
                    curr = currs[next_ant]
                    prev = prevs[next_ant]
                    

                    if curr != origins[next_ant] and (not search_mode[next_ant])\
                                                 and pheromone_dead_end(G, curr, prev):
                        search_mode[next_ant] = True
            
                    n = list(G.neighbors(curr))
                    if curr != prev and prev != None:
                        n.remove(prev)
                    if len(n) == 0:
                        deadend[next_ant] = (curr not in nests)
                        #print curr, deadend[j]
                    elif len(n) > 1:
                        deadend[next_ant] = False
                
                    if (prev == curr) or (curr == origins[next_ant] and not search_mode[next_ant]):
                        prev = None

                    
                    exp_prob = explore_prob            
                    if (curr == origins[next_ant] and not search_mode[next_ant]):
                        exp_prob = 0
                    
                    
                    next, ex = next_edge(G, curr, exp_prob, strategy, prev, \
                                         destinations[next_ant], search_mode[next_ant],\
                                         backtrack)

                    if G[curr][next]['weight'] <= MIN_DETECTABLE_PHEROMONE:
                        queue_ant(G2, curr, next_ant)
                        if not deadend[next_ant]:
                            add_amount = 2 * pheromone_add
                            G2[curr][next]['weight'] += add_amount
                            if decay_type == 'linear':
                                G2[curr][next]['units'].append(add_amount)
                            nonzero_edges.add(Ninv[(curr, next)])
                        new_queue_nodes.add(curr)
                        empty_nodes.discard(curr)
                        prevs[next_ant] = next
                        currs[next_ant] = curr
                        if video:
                            paths[next_ant].append(curr)
                        if track_pruning:
                            walks[next_ant].append(curr)
                        if DEBUG_PATHS:
                            check_path(G, paths[next_ant])
                    else:
                        if (curr, next) == G[curr][next]['forwards']:
                            G2[curr][next]['forwards_queue'].append(next_ant)
                        else:
                            G2[curr][next]['backwards_queue'].append(next_ant)
                        queued_edges.add(Ninv[(curr, next)])
                        
            queued_nodes.difference_update(empty_nodes)
            queued_nodes.update(new_queue_nodes)
            
            if DEBUG_QUEUES:
                check_queues(G2, queued_nodes, queued_edges, curr_ants)
            
            for edge_id in queued_edges:
                u, v = N[edge_id]
                 
                resulting_size = 0
                for direction in ['forwards', 'backwards']:
                    i = 0
                    curr, next = G2[u][v][direction]
                    
                    if CRITICAL_NODES and 'critical_node' in G.graph:
                        if G.graph['critical_node'] in (u, v):
                            critical_nodes_file.write('%s, %s, %d\n' % (curr, next, steps))
                    
                    edge_queue = G2[u][v][direction + '_queue']
                    
                    eqlim = edge_queue_lim
                    if edge_queue_lim == -1:
                        eqlim = len(edge_queue)
                    while len(edge_queue) > 0 and i < eqlim:
                        next_ant = edge_queue.pop(0)
                        i += 1                     
                        queue_ant(G2, next, next_ant)
                        
                        new_queue_nodes.add(next)
                        empty_nodes.discard(next)
                        prevs[next_ant] = curr
                        currs[next_ant] = next
                        if not deadend[next_ant]:
                            add_amount = pheromone_add
                            if 'plant' in G.node[curr] and 'plant' in G.node[next]:
                                if G.node[curr]['plant'] != G.node[next]['plant']:
                                    add_amount *= 0.5
                            G2[curr][next]['weight'] += add_amount
                            if decay_type == 'linear':
                                G2[curr][next]['units'].append(add_amount)
                            nonzero_edges.add(Ninv[(curr, next)])
                        
                        if video:
                            paths[next_ant].append(next)
                        if track_pruning:
                            walks[next_ant].append(next)

                        if DEBUG_PATHS:
                            check_path(G, paths[next_ant])
         
                        if next == destinations[next_ant]:
                            orig, dest = origins[next_ant], destinations[next_ant]
                            dest = next_destination(orig)
                            origins[next_ant], destinations[next_ant] = dest, orig
                            search_mode[next_ant] = False
            
                            if track_pruning :
                                walk = walks[next_ant]
                                
                                if walk[0] == orig and walk[-1] == dest:
                                    chosen_walk_counts[tuple(walk)] += 1
                                    
                                    walk2 = remove_self_loops(walk)
                                    path, cycle_count = walk_to_path(walk2)
                                    start = path[0]
                                    end = path[-1]
                                    idx1 = nests.index(orig)
                                    idx2 = nests.index(dest)
                                    if idx2 > idx1:
                                        path = path[::-1]
                                    path_counts[tuple(path)] += 1
                
                                    curr_path_entropy = entropy(path_counts.values())
                                    curr_walk_entropy = entropy(chosen_walk_counts.values())
                
                                    if max_entropy == None:
                                        max_entropy = curr_path_entropy
                                    else:
                                        max_entropy = max(max_entropy, curr_path_entropy)
                    
                                    if max_walk_entropy == None:
                                        max_walk_entropy = curr_walk_entropy
                                    else:
                                        max_walk_entropy = max(max_walk_entropy, curr_walk_entropy)    
                                        
                                    mean_chosen_path_len = weighted_mean_path_len(path_counts)
                                    if max_chosen_path_len == None:
                                        max_chosen_path_len = mean_chosen_path_len
                                    else:
                                        max_chosen_path_len = max(max_chosen_path_len, mean_chosen_path_len)
                                        
                                    chosen_cycle_counts.append(cycle_count)
                                    mean_chosen_cycle_count = mean(chosen_cycle_counts)
                                    if max_chosen_cycle_count == None:
                                        max_chosen_cycle_count = mean_chosen_cycle_count
                                    else:
                                        max_chosen_cycle_count = max(max_chosen_cycle_count, mean_chosen_cycle_count)
                                    
            
                                walks[next_ant] = [origins[next_ant]]
                            
            
                        elif next == origins[next_ant]:
                            search_mode[next_ant] = True
                            
                    for j in xrange(len(edge_queue)):
                        next_ant = edge_queue[j]
                        if video:
                            paths[next_ant].append(curr)
                        if DEBUG_PATHS:
                            check_path(G, paths[next_ant])
                        walks[next_ant].append(curr)
                        resulting_size += 1
                
                if resulting_size == 0:
                    empty_edges.add(edge_id)
                        
            
            queued_nodes.difference_update(empty_nodes)
            queued_nodes.update(new_queue_nodes)
            queued_edges.difference_update(empty_edges)
            
            if DEBUG_QUEUES:
                check_queues(G2, queued_nodes, queued_edges, curr_ants)
            
            decay_func = get_decay_func_edges(decay_type)
            zero_edges = decay_func(G2, nonzero_edges, pheromone_decay,
                                    time=SECONDS_PER_STEP, min_pheromone=MIN_PHEROMONE)
            nonzero_edges.difference_update(zero_edges)
            
            if num_ants == -1:
                for nest in nests:
                    ant = curr_ants
                    curr = nest
                    
                    origin = nest
                    origins[ant] = origin
                    destinations[ant] = next_destination(origin)
            
                    if video:
                        paths[ant] = ([None] * (steps + 1)) + [curr]
                    
                    if destinations[ant] == curr:
                        origins[ant], destinations[ant] = destinations[ant], origins[ant]
                    
                    walks[ant] = [curr]
                    
                    prevs[ant] = None
                    currs[ant] = curr
                    
                    deadend[ant] = False
                    
                    queue_ant(G2, curr, ant)
                    queued_nodes.add(curr)
                    
                    curr_ants += 1
                            
            G = G2
        
            for u, v in sorted(G.edges()):
                index = Ninv[(u, v)]
                wt = G[u][v]['weight']
                #unique_weights.add(wt)
                max_weight = max(max_weight, wt)
                if video:
                    if wt <= MIN_DETECTABLE_PHEROMONE:
                        edge_weights[index].append(None)
                    else:
                        edge_weights[index].append(wt)
        
            if connect_time == -1 and has_pheromone_path(G, nests[0], nests[1]):
                connect_time = steps
        
            steps += 1
    
        cost = 0
        max_wt = 0
        for u, v in G.edges():
            wt = G[u][v]['weight']
            if wt > MIN_PHEROMONE:
                cost += 1
            max_wt = max(wt, max_wt)
                            
        e_colors = edge_color[:]
        e_widths = edge_width[:]
        n_colors = node_color[:]
        n_sizes = node_size[:]
    
        for nest in nests:
            n_colors[Minv[nest]] = 'm'
            n_sizes[Minv[nest]] = 100
                            
        def init():
            nx.draw(G, pos=pos, with_labels=False, node_size=n_sizes, edge_color=e_colors,\
                    node_color=n_colors, width=e_widths, nodelist = sorted(G.nodes()), \
                    edgelist = sorted(G.edges()))
    
        def redraw(frame):
            PP.clf()
            print frame
        
            n_colors = ['r'] * len(node_color)
            n_sizes = [10] * len(node_size)
        
            ax = PP.gca()
        
            for p in paths:             
                node = paths[p][frame + 1]
                if node != None:
                    index = Minv[node]
                    n_colors[index] = 'k'
                    n_sizes[index] += ant_thickness
                                        
            max_units = max_weight / pheromone_add
        
            e_colors = []
            e_widths = []
            for u, v in sorted(G.edges()):
                index = Ninv[(u, v)]
                edge_wt = edge_weights[index][frame]
                if edge_wt == None:
                    e_colors.append('k')
                    e_widths.append(1)
                else:
                    e_colors.append('g')
                    e_widths.append(1 + 25 * (edge_wt / max_weight))
        
            for nest in nests:
                n_colors[Minv[nest]] = 'm'

            nx.draw(G, pos=pos, with_labels=False, node_size=n_sizes, edge_color=e_colors, \
                    node_color=n_colors, width=e_widths, nodelist = sorted(G.nodes()), \
                    edgelist = sorted(G.edges()))
            f = PP.draw()
            return f,
    
        if nframes == -1:
            nframes = steps
    
        if video:    
            ani = animation.FuncAnimation(fig, redraw, init_func=init, frames=nframes, \
                                          interval = FRAME_INTERVAL)
            vid_dir = 'figs/videos/%s' % savedir
            os.system('mkdir -p ' + vid_dir)
            ani.save('%s/ant_%s%d.mp4' % (vid_dir, out_str, iter), writer='avconv')
            
            return None
        
        if print_graph:
            outdir = 'figs/after_graphs/' + savedir
            os.system('mkdir -p ' + outdir)
            figname = outdir + '/graph_after_%s%d_e%0.2fd%0.2f' % (out_str, max_steps, explore_prob, pheromone_decay)
            color_graph(G, 'g', (pheromone_add / max_wt),  figname, cost)
            print "graph colored"
    
        costs.append(cost)
        max_cost = max(max_cost, cost)
        costs = PP.array(costs)
        cost_pruning = (max_cost - cost) / float(max_cost)
        if cost_plot:
            outdir = 'figs/cost_plots/' + savedir
            os.system('mkdir -p ' + outdir)
            figname = outdir + "/cost_plot_%s%d_e%0.2fd%0.2f" %\
                      (savedir, out_str, max_steps, explore_prob,\
                       pheromone_decay, cost)
            pruning_plot(costs, figname, max_cost)
                
        path_pruning = None  
        if len(path_counts) > 0:
            curr_path_entropy = entropy(path_counts.values())
            max_entropy = max(max_entropy, curr_path_entropy)
            path_pruning = max_entropy - curr_path_entropy
        
        walk_pruning = None
        if len(chosen_walk_counts) > 0:
            curr_walk_entropy = entropy(chosen_walk_counts.values())
            max_walk_entropy = max(max_walk_entropy, curr_walk_entropy)
            walk_pruning = max_walk_entropy - curr_walk_entropy

        # Output results.
        path_lengths, revisits = [], []
        right_nest, wrong_nest = 0.0, 0.0
        hit_counts, miss_counts = [], []
    
        nest, target = nests[0], nests[1]
            
        has_path = has_pheromone_path(G, nest, target)
        after_paths = []
        if has_path:
            if False:#'uniform' in strategy:
                after_paths = pheromone_paths(G, nest, target, MAX_PATH_LENGTH)
            else:
                after_paths = maximal_paths(pheromone_subgraph(G), nest, target)
        path_probs = []
    
        useful_edges = set()
        path_lenghts = []
        for path in after_paths:
            path_prob = path_prob_no_explore(G, path, strategy)
            if path_prob > 0:
                path_probs.append(path_prob)
                edges = path_to_edges(path)
                useful_edges.update(edges)
                path_lengths.append(len(path))
        wasted_edge_count, wasted_edge_weight = wasted_edges(G, useful_edges)
    
        path_etr = None
        if len(path_probs) > 0:
            path_etr = entropy(path_probs)
            path_etr = np.abs(path_etr)
        else:
            has_path = False
            
        mean_path_len = None
        if len(path_lengths) > 0:
            mean_path_len = mean(path_lengths)
            
        mean_chosen_path_len = weighted_mean_path_len(path_counts)
        
        mean_chosen_cycle_count = None
        if len(chosen_cycle_counts) > 1:
            mean_chosen_cycle_count = mean(chosen_cycle_counts)
            
        path_len_pruning = None
        if mean_path_len != None:
            if max_path_len != None:
                path_len_pruning = max_path_len - mean_path_len
                
        chosen_path_len_pruning = None
        if mean_chosen_path_len != None:
            if max_chosen_path_len != None:
                chosen_path_len_pruning = max_chosen_path_len - mean_chosen_path_len
                
        chosen_cycle_count_pruning = None
        if mean_chosen_cycle_count != None:
            if max_chosen_cycle_count != None:
                chosen_cycle_count_pruning = max_chosen_cycle_count - mean_chosen_cycle_count
        
        print "has path", has_path
        print "path entropy", path_etr
        
        journey_times = []
        journey_lengths = []
        walk_counts = defaultdict(int)
        total_steps = 0

        cycles_pruning = None
        if max_cycles > 0:
            cycles_pruning = max_cycles - curr_max_cycles
   
        header_items += ['has path', 'graph cost']
        write_items += [int(has_path), cost]
    
        header_items.append('path entropy')
        if (path_etr != None) and path_etr != float("-inf") and (not PP.isnan(path_etr)):
            assert path_etr >= 0
            write_items.append(path_etr)
        else:
            write_items.append('')
    
        header_items.append('cost pruning')
        write_items.append(cost_pruning)
    
        header_items.append('connect time')
        if connect_time != -1:
            write_items.append(connect_time)
        else:
            write_items.append('')
    
        header_items.append('path pruning')
        if path_pruning != None:
            write_items.append(path_pruning)
        else:
            write_items.append('')
        
        header_items.append('current path entropy')
        if curr_path_entropy != None:
            write_items.append(curr_path_entropy)
        else:
            write_items.append('')
     
        header_items.append('walk pruning')
        if walk_pruning != None:
            write_items.append(walk_pruning)
        else:
            write_items.append('')
        
        header_items.append('current walk entropy')
        if curr_walk_entropy != None:
            write_items.append(curr_walk_entropy)
        else:
            write_items.append('')

        header_items += ['wasted edge count', 'wasted edge weight']
        write_items += [wasted_edge_count, wasted_edge_weight]
        
        header_items.append('mean path length')
        if mean_path_len != None:
            write_items.append(mean_path_len)
        else:
            write_items.append('')

        header_items.append('cycles pruning')
        if cycles_pruning != None:
            write_items.append(cycles_pruning)
        else:
            write_items.append('')

        header_items.append('current max cycles')
        write_items.append(curr_max_cycles)
        
        header_items.append('path length pruning')
        if path_len_pruning != None:
            write_items.append(path_len_pruning)
        else:
            write_items.append('')
            
        header_items.append('chosen path length pruning')
        if chosen_path_len_pruning != None:
            write_items.append(chosen_path_len_pruning)
        else:
            write_items.append('')
            
        header_items.append('chosen cycle count pruning')
        if chosen_cycle_count_pruning != None:
            write_items.append(chosen_cycle_count_pruning)
        else:
            write_items.append('')
    
        with open(data_fname, 'a') as data_file:
            header_str = ', '.join(map(str, header_items))
            if first_time:
                data_file.write(header_str + '\n')
            data_str = ', '.join(map(str, write_items))
            data_file.write(line + '\n')
示例#3
0
rgax[:,11] = rgax[:,11] + dmag
rg[pl.find(rg[:,8] < 0),8] = rg[pl.find(rg[:,8] < 0),8] + 360
rg[pl.find(rg[:,13] < 0),13] = rg[pl.find(rg[:,13] < 0),13] + 360
rg[pl.find(rg[:,16] < 0),16] = rg[pl.find(rg[:,16] < 0),16] + 360
rgax[pl.find(rgax[:,11] < 0),11] = rgax[pl.find(rgax[:,11] < 0),11] + 360

#datas
# dre = np.array([datetime.strptime(str(int(re[i,0])), '%Y%m%d%H%M') for i in range(len(re))])
dsa = np.array([datetime.strptime(str(int(sa[i,0])), '%Y%m%d%H%M') for i in range(len(sa))])
dfl = np.array([datetime.strptime(str(int(fl[i,0])), '%Y%m%d%H%M') for i in range(len(fl))])
drg = np.array([datetime.strptime(str(int(rg[i,0])), '%Y%m%d%H%M') for i in range(len(rg))])
drgax = np.array([datetime.strptime(rgax_data[i,0]+'-'+rgax_data[i,1], '%Y/%m/%d-%H:%M') for i in range(len(rgax))])

#retira os valores com nan
# re1 = re[pl.find(pl.isnan(re[:,1])==False),:]
sa1 = sa[pl.find(pl.isnan(sa[:,1])==False),:]
fl1 = fl[pl.find(pl.isnan(fl[:,1])==False),:]
rg1 = rg[pl.find(pl.isnan(rg[:,1])==False),:]


####################################################################################
####################################################################################
#comparacao da serie temporal da axys (summary) e lioc

#janela para plotagem com as 3 medicoes
a1 = datetime(2012,8,19,1,0)
a2 = datetime(2012,9,30,1,0)
ms = 9 #markersize


pl.figure()
示例#4
0
文件: phot.py 项目: indebetouw/pyphot
def phot1(r,
          imlist,
          plot=True,
          names=None,
          panel=None,
          debug=None,
          showmask="both"):
    """
    give me a region and an imlist and tell me whether to plot cutouts
    """
    nim = len(imlist)
    # TODO alg for how many subpanels.
    if panel == None: panel = [5, 4, 1]  # for vertical page
    f = []
    df = []
    raw = []
    for j in range(nim):
        im = imlist[j]
        # if plotting, need to make image cutouts; even if not, this tells
        # us if the source is off the edge
        xtents = r.imextents(imlist[j])
        minsize = 5
        if (xtents[3] - xtents[1]) < minsize or (xtents[2] -
                                                 xtents[0]) < minsize:
            raw0, f0, df0 = 0, 0, 0
            print "phot region too small - %f,%f less than %d pixels" % (
                (xtents[3] - xtents[1]), (xtents[2] - xtents[0]), minsize)
            print xtents, r.imcoords(im, reg="bg1")
        else:
            if plot:
                pl.subplot(panel[0], panel[1], panel[2])
                im = hextract(imlist[j], xtents)[0]
                ## ROTATE
                rotate = True
                if rotate:
                    from astropy import wcs
                    w = wcs.WCS(im.header)
                    from scipy.ndimage.interpolation import rotate
                    if w.wcs.has_crota():
                        t0 = w.wcs.crota[1]
                    else:
                        t0 = pl.arctan2(w.wcs.cd[0, 1],
                                        -w.wcs.cd[0, 0]) * 180 / pl.pi
                    theta = -1 * t0
                    im.data = rotate(im.data, theta, reshape=False)
                    ct = pl.cos(pl.pi * theta / 180)
                    st = pl.sin(pl.pi * theta / 180)
                    if w.wcs.has_crota():
                        w.wcs.crota[1] = w.wcs.crota[1] + theta
                        im.header['CROTA2'] = w.wcs.crota[1]
                        print "rotating crota by " + str(theta)
                    else:
                        w.wcs.cd = pl.matrix(w.wcs.cd) * pl.matrix([[ct, -st],
                                                                    [st, ct]])
                        im.header['CD1_1'] = w.wcs.cd[0, 0]
                        im.header['CD1_2'] = w.wcs.cd[0, 1]
                        im.header['CD2_1'] = w.wcs.cd[1, 0]
                        im.header['CD2_2'] = w.wcs.cd[1, 1]
                        print "rotating cd    by " + str(theta)

                    #pdb.set_trace()

                # ugh need minmax of aperture region...
                # estimate as inner 1/2 for now
                s = im.shape
                z = im.data[int(s[0] * 0.25):int(s[0] * 0.75),
                            int(s[1] * 0.25):int(s[1] * 0.75)]
                if len(z[0]) <= 0:
                    print z

                z = pl.where(pl.isnan(im.data))
                if len(z[0]) > 0:
                    z = pl.where(pl.isnan(im.data) == False)
                    std = im.data[z[0], z[1]].std()
                else:
                    std = im.data.std()
                rg = pl.median(im.data) + pl.array([-0.5, 5]) * std
                # marta wants them less saturated
                rg[1] = pl.nanmax(im.data)

                if rg[0] < 0: rg[0] = 0
                if rg[1] <= rg[0]:
                    rg = [pl.nanmin(z), pl.nanmax(z)]
                if showmask == False or showmask == "both":  # show the jet one
                    pl.imshow(im.data,
                              origin="bottom",
                              interpolation="nearest",
                              vmin=rg[0],
                              vmax=rg[1])
                elif showmask == True:  # only show the mask
                    pl.imshow(im.data,
                              origin="bottom",
                              interpolation="nearest",
                              vmin=rg[0],
                              vmax=rg[1],
                              cmap="YlGn")
                ax = pl.gca()
                ax.axes.get_xaxis().set_visible(False)
                ax.axes.get_yaxis().set_visible(False)
                if names:
                    pl.text(0.05,
                            0.99,
                            names[j],
                            horizontalalignment='left',
                            verticalalignment='top',
                            transform=ax.transAxes,
                            bbox=dict(facecolor='white', alpha=0.5))
                pl.xlim([-0.5, s[1] - 0.5])
                pl.ylim([-0.5, s[0] - 0.5])
                if showmask == False:
                    r.plotimx(im)  # overplot the apertures

                if showmask == "both":
                    panel[2] = panel[2] + 1
                    pl.subplot(panel[0], panel[1], panel[2])
                    rg = pl.median(im.data) + pl.array([-0.5, 5]) * std
                    if rg[0] < 0: rg[0] = 0
                    if rg[1] <= rg[0]:
                        rg = [pl.nanmin(z), pl.nanmax(z)]
                    pl.imshow(im.data,
                              origin="bottom",
                              interpolation="nearest",
                              vmin=rg[0],
                              vmax=rg[1],
                              cmap="YlGn")
                    ax = pl.gca()
                    ax.axes.get_xaxis().set_visible(False)
                    ax.axes.get_yaxis().set_visible(False)
                    if names:
                        pl.text(0.05,
                                0.99,
                                names[j],
                                horizontalalignment='left',
                                verticalalignment='top',
                                transform=ax.transAxes,
                                bbox=dict(facecolor='white', alpha=0.5))
                    pl.xlim([-0.5, s[1] - 0.5])
                    pl.ylim([-0.5, s[0] - 0.5])

            if debug:
                #                r.debug=True
                if names:
                    print names[j]

            raw0, bg, f0, df0 = r.phot(im)
        raw.append(raw0)
        f.append(f0)
        df.append(df0)
        panel[2] = panel[2] + 1
    if plot:
        pl.subplots_adjust(wspace=0.02,
                           hspace=0.02,
                           left=0.1,
                           right=0.97,
                           top=0.95,
                           bottom=0.05)
    return f, df, raw
 
for idata in range(len(datam_pystr)):
    nest[idata] = np.where(datam_ww3str == datam_pystr[idata])[0]
 
nest = nest.astype(int)
 
ww3 = ww3[nest]
datam_ww3 = datam_ww3[nest]
 


###########################################################################
#realiza estatisticas (bias, rmse, si, corr)

#seleciona valor sem nan
aux = pl.find(pl.isnan(py[:,6])==False)

hs = py[aux,6]
tp = py[aux,7]
dp = py[aux,8]
hs_mod = ww3[aux,5]
tp_mod = ww3[aux,6]
dp_mod = ww3[aux,7]


### BIAS ###
#hs
bias_hs = np.mean(hs_mod - hs)
#tp
bias_tp = np.mean(tp_mod - tp)
#dp