示例#1
0
def nxmx3(m):
    sh = m.shape
    m2 = m.copy()  # working copy, might chance
    assert (len(sh) == 2 or len(sh) == 3)
    if len(sh) == 3:
        if sh[2] == 3:
            # matrix is already mxnx3
            return m2
        else:
            # matrix is MxNxD with D!=3, best we can do:
            m2 = pylab.mean(m2, 2)
    # here, m2 is MxN...
    return pylab.tile(m2.reshape(sh[0], sh[1], 1), (1, 1, 3))
示例#2
0
def make_error(data_file, xin=None):
    databox = spinmob.data.load(data_file)
    errs = []
    xs = databox.c('c8')
    xs -= xs[0]
    for i in range(6):
        vals = databox.c('c{:d}'.format(i))
        if xin:
            vals = pylab.array([v for x, v in zip(xs, vals) if xin[0] <= x <= xin[1]])
        std = pylab.std(vals)
        errs.append(std)
    err = pylab.mean(errs)
    return err, errs
示例#3
0
def image_derivative(im, derivative, do_scale=True):
    assert (len(im.shape) == 2 or len(im.shape) == 3)
    assert (im.dtype == 'float')
    assert (derivative in ['x', 'y', 'grad'])
    # obtain a gray image
    if len(im.shape) == 3:
        gray_im = pylab.mean(im, 2)
    else:
        gray_im = im
    # either x,y derivative or full gradient
    if derivative == 'grad':
        dy = ndimage.sobel(gray_im, 0)
        dx = ndimage.sobel(gray_im, 1)
        deriv_im = pylab.sqrt(dy * dy + dx * dx)
    else:
        deriv_im = ndimage.sobel(gray_im, {'x': 1, 'y': 0}[derivative])
    return imscale(deriv_im) if do_scale else deriv_im
示例#4
0
            image = Image.open(tv03_file)
            image2 = Image.open(bmp_time)

            #img1 = image.crop((64,0,512,512)) #TV03 Image cropping
            img1 = image.crop((210, 80, 512, 492))  #TV03 Image cropping
            img1.save('tv03_tmp.png')

            #img2 = image2.crop((80,54,528,566)) #TV03 Image cropping
            img2 = image2.crop((150, 80, 520, 540))  #TV01 Image cropping
            img2.save('tv01_tmp.png')

            #a = pylab.imread(bmp_time)
            a = pylab.imread('tv01_tmp.png')

            #generates a RGB image, so do
            fig_bmp = pylab.mean(a, 2)  # to get a 2-D array
            #DPI = pylab.gcf().get_dpi()
            #Size = fig_bmp.shape
            #print 'Size: ', Size

            #GCF = pylab.gcf()
            #DPI = GCF.get_dpi()
            #print "DPI: ", DPI

            #b_box_1 = (top, left, bottom,right)
            #b_box_1 = (10,10,200,200)
            #a = a.crop(b_box_1);

            ax3 = pylab.subplot(gs[0])
            #b = pylab.imread(tv03_file)
            b = pylab.imread('tv03_tmp.png')
def print_stats(list_1):
    print("\t N\t", len(list_1))
    print("\t mean\t", pylab.mean(list_1))
    print("\t error\t", pylab.std(list_1) / pylab.sqrt(len(list_1)))
示例#6
0
def float3d_to_uint2d(im):
    return pylab.array(pylab.mean(im, 2) * 255, dtype='uint8')
            #GCF = pylab.gcf()
            #DPI = GCF.get_dpi()
            #print "DPI: ", DPI

            #b_box_1 = (top, left, bottom,right) 
            #b_box_1 = (10,10,200,200)
            #a = a.crop(b_box_1);

            ax3 = pylab.subplot(gs[1])
            pylab.title(string_time,fontsize=40)

            #b = pylab.imread(tv03_file)   
            b = pylab.imread('tv03_tmp.png')

            fig_tv03=pylab.mean(b,2)
           
            print 'done'
            
            #fig_bmp = Image.open(datafile)
            #dpi = pylab.rcParams['figure.dpi']
            
            #figsize = fig_bmp.size[0]/dpi, fig_bmp.size[1]/dpi

            #figure(figsize=figsize)
            
            #ax2.axis('scaled')
            
            #ax2.get_xaxis().set_ticks([]);
            #ax2.get_yaxis().set_ticks([]);
示例#8
0
def mean_path_score(G, paths):
    paths = list(paths)
    if len(paths) == 0:
        return 0
    scores = map(lambda path : path_score(G, path), paths)
    return PP.mean(scores)
            #GCF = pylab.gcf()
            #DPI = GCF.get_dpi()
            #print "DPI: ", DPI

            #b_box_1 = (top, left, bottom,right)
            #b_box_1 = (10,10,200,200)
            #a = a.crop(b_box_1);

            ax3 = pylab.subplot(gs[1])
            pylab.title(string_time, fontsize=40)

            #b = pylab.imread(tv03_file)
            b = pylab.imread('tv03_tmp.png')

            fig_tv03 = pylab.mean(b, 2)

            print 'done'

            #fig_bmp = Image.open(datafile)
            #dpi = pylab.rcParams['figure.dpi']

            #figsize = fig_bmp.size[0]/dpi, fig_bmp.size[1]/dpi

            #figure(figsize=figsize)

            #ax2.axis('scaled')

            #ax2.get_xaxis().set_ticks([]);
            #ax2.get_yaxis().set_ticks([]);
示例#10
0
            image = Image.open(tv03_file)
            image2 = Image.open(bmp_time)

            #img1 = image.crop((64,0,512,512)) #TV03 Image cropping
            img1 = image.crop((210,80,512,492)) #TV03 Image cropping
            img1.save('tv03_tmp.png')

            #img2 = image2.crop((80,54,528,566)) #TV03 Image cropping
            img2 = image2.crop((150,80,520,540)) #TV01 Image cropping
            img2.save('tv01_tmp.png')
            
            #a = pylab.imread(bmp_time)
            a = pylab.imread('tv01_tmp.png')

            #generates a RGB image, so do
            fig_bmp=pylab.mean(a,2) # to get a 2-D array
            #DPI = pylab.gcf().get_dpi()
            #Size = fig_bmp.shape
            #print 'Size: ', Size

            #GCF = pylab.gcf()
            #DPI = GCF.get_dpi()
            #print "DPI: ", DPI

            #b_box_1 = (top, left, bottom,right) 
            #b_box_1 = (10,10,200,200)
            #a = a.crop(b_box_1);

            ax3 = pylab.subplot(gs[0])
            #b = pylab.imread(tv03_file)   
            b = pylab.imread('tv03_tmp.png')
示例#11
0
       result = []
    for year in years:
        daily_temp_365 = pylab.zeros(365)
        daily_temp_366 = pylab.zeros(366)
        for city in multi_cities:
            if len(climate.get_yearly_temp(city, year)) == 365:
                daily_temp_365 += climate.get_yearly_temp(city, year)
            else:
                daily_temp_366 += climate.get_yearly_temp(city, year)
        if sum(daily_temp_365) > sum(daily_temp_366):
            daily_temp = daily_temp_365
        else:
            daily_temp = daily_temp_366
        daily_temp = daily_temp/len(multi_cities)
        mean = pylab.mean(daily_temp)
        var = 0.0
        for temp in list(daily_temp):
            var += (temp - mean)**2
        result.append(math.sqrt(var/len(daily_temp)))
    return pylab.array(result)


def evaluate_models_on_testing(x, y, models):
    """
    For each regression model, compute the RMSE for this model and plot the
    test data along with the model’s estimation.

    For the plots, you should plot data points (x,y) as blue dots and your best
    fit curve (aka model) as a red solid line. You should also label the axes
    of this figure appropriately and have a title reporting the following
示例#12
0
# x = P.hstack([x + P.randn(len(x))*.02*v, x + P.randn(len(x))*.01*v, x])
# y = P.hstack([y, y, y])

print("Calculating error stats...")
ah = 8
a = y.reshape(-1)[:-ah]
ax = x.reshape(-1)
print("VARIANCE")
print(P.var(a))
print("STD")
print(P.std(a))
A = P.vstack([a[i:(i - ah)] for i in range(ah)])
AX = P.vstack([ax[i:(i - 2 * ah)] for i in range(2 * ah)])
A = P.vstack([A, AX, ax[2 * ah:]])
b = a[ah:]
A = A - P.mean(A, 1).reshape(-1, 1)
b = b - P.mean(b)
print("LMMSE with {0} taps".format(ah))
LMMSE = P.mean((b - A.T.dot(P.inv(P.dot(A, A.T)).dot(A.dot(b))))**2)
print(LMMSE)
print("LMRMSE with {0} taps".format(ah))
print(P.sqrt(LMMSE))


def mu_law(a, mu=256, MAX=None):
    mu = mu - 1
    a = P.array(a)
    MAX = a.max() if MAX is None else MAX
    a = a / MAX
    y = (1 + P.sign(a) * P.log(1 + mu * abs(a)) / P.log(1 + mu)) / 2
    inds = P.around(y * mu).astype(P.uint8)