示例#1
0
 def show(self, zones):
     plt.plot(x_values, y_values, '.')
     plt.x_label(self.x_label)
     plt.y_label(self.y_label)
     plt.title(self.title)
     plt.grid(self.show_grid)
     plt.show()
示例#2
0
def graph_plot():
    plt.plot(x_data, y_data, label="displacement") #グラフのx軸、y軸をx_data(x_difference),y_data(z_difference)に設定
    plt.title('fly_distance')                      #タイトルを'fly_distance'に設定
    plt.x_label('x_difference')                    #x軸の名前を'x_difference'に設定
    plt.y_label('z_difference')                    #y軸の名前を'z_difference'に設定
    plt.grid()                                     #罫線の追加
    plt.savefig('fly_distance.png')                #グラフを'fly_distance.png'という名前で保存
示例#3
0
def main(params):
    model_dir = "task" + str(params['task_id']) + "_" + params['model_dir']
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    chatbot = chatBot(data_dir=params['data_dir'],
                      model_dir=model_dir,
                      task_id=params['task_id'],
                      isInteractive=params['interactive'],
                      OOV=params['OOV'],
                      memory_size=params['memory_size'],
                      random_state=params['random_state'],
                      batch_size=params['batch_size'],
                      learning_rate=params['learning_rate'],
                      epsilon=params['epsilon'],
                      max_grad_norm=params['max_grad_norm'],
                      evaluation_interval=params['evaluation_interval'],
                      hops=params['hops'],
                      epochs=params['epochs'],
                      embedding_size=params['embedding_size'],
                      save_model=params['save_model'],
                      checkpoint_path=params['checkpoint_path'])
    if params['train']:
        chatbot.train()
        # Plot Losses
        plt.plot(chatbot.losses)
        plt.x_label('Epochs')
        plt.y_label('Losses')
        plt.show()
        plt.savefig('scratch_models/task{0}_epochs{1}_plot.png'.format(
            chatbot.task_id, chatbot.epochs))
    else:
        chatbot.test(0)
        chatbot.test(1)
        chatbot.test(2)
示例#4
0
def plot_metrics(history, metric):
    """plot train and test metrics."""
    plt.plot(history.history(metric))
    plt.plot(history.history["val_" + metric], "")
    plt.xlabel("Epochs")
    plt.y_label(metric)
    plt.legend([metric, "val_" + metric])
    plt.show()
示例#5
0
    def _set_attributes(self, pid):
        """
        sets the attributes of the plot for the given pid.  Returns the 
        location of the legend for that plot
        """

        attrib = dict(self._gb_plot_attributes)
        attrib.update(dict(self._plot_attributes.get(pid, {})))

        if 'title' in attrib:
            plt.title(attrib['title'])
        if 'xlim' in attrib:
            plt.xlim(*attrib['xlim'])
        if 'ylim' in attrib:
            plt.ylim(*attrib['ylim'])
        if 'x_label' in attrib:
            plt.x_label(*attrib['x_label'])
        if 'y_label' in attrib:
            plt.y_label(*attrib['y_label'])

        #note: options for legend loc include "lower left", "left", "center", etc,
        return attrib.get('legend_loc', 'best')
示例#6
0
@author: Nagaraj U
"""

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

dataset=pd.read_csv('Position_Salaries.csv')
X=dataset.iloc[:,1:2].values
y=dataset.iloc[:,2].values

#no need of splitting into train and test

#fitting random forest tree for dataset
from sklearn.ensemble import RandomForestRegressor
regressor=RandomForestRegressor(n_estimators=500,random_state=0)
regressor.fit(X,y)

#preficting result
y_pred=regressor.predict([[6.5]])

#visualising results
X_grid=np.arange(min(X),max(X),0.01)
X_grid=X_grid.reshape(len(X_grid),1)
plt.scatter(X,y,color='red')
plt.plot(X_grid,regressor.predict(X_grid),color='blue')
plt.title('truth or bluf of emplyee')
plt.x_label('level')
plt.y_label('salaries')
示例#7
0
sns.displot(investor_funds,ax =ax[2], color = "#2EAD46")
ax[2].set_title("Total committed by Investors", fontsize=14)

#上面三图观察发现三者分布相似


#年份与贷款之间的关系
dt_series = pd.to_datetime(df['issue_d'])		#http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html#pandas.to_datetime
df['year'] = dt_series.dt.year	# 新创年份属性		#对to_datetime对象调用其字典


plt.figure(figsize = (12,8))
sns.barplot('year','loan_amount',data = df,palette = 'tab10')		#第一个为x,第二个为y 
plt.title("Issuance of Loans", fontsize = 14)	
plt.xlabel('year',fontsize = 14)
plt.y_label("Average loan amount issued", fontsize = 14)

#贷款数量逐年升高


df["loan_status"].value_counts() 
'''
Current                                                601779
Fully Paid                                             207723
Charged Off                                             45248
Late (31-120 days)                                      11591
Issued                                                   8460
In Grace Period                                          6253
Late (16-30 days)                                        2357
Does not meet the credit policy. Status:Fully Paid       1988
Default                                                  1219
示例#8
0
from sklearn.linear_model import Ridge
rdregressor = Ridge(alpha=1, normalize=True)
rdregressor.fit(X_train, y_train)
y_pred = rdregressor.predict(X_train)
score3 = rdregressor.score(X_train, y_train) * 100
print("R Square value:", score3)
print("Custome accuracy for Ridge:", custom_accuracy(y_test, y_pred, 20))

from sklearn.linear_model import Lasso
lsregressor = Lasso(alpha=1, normalize=True)
lsregressor.fit(X_train, y_train)
y_pred = lsregressor.predict(X_test)
score4 = lsregressor.score(X_train, y_train) * 100
print("R Square value:", score4)
print("Custome accuracy for Lasso:", custom_accuracy(y_test, y_pred, 20))

from sklearn.svm import SVR
svregressor = SVR()
svregressor.fit(X_train, y_train)
y_pred = svregressor.predict(X_test)
score5 = svregressor.score(X_train, y_train) * 100
print("R Square value:", score5)
print("Custome accuracy for SVR:", custom_accuracy(y_test, y_pred, 20))

models = ['Random Forest', 'Linear Regression', 'Ridge', 'Losso']
acc_score = [0.79, 0.43, 0.28, 0.26]
plt.bar(models, acc_score, color=['green', 'pink', 'cyan', 'skyblue'])
plt.y_label("Accurate scores")
plt.title("Which model is the best accurate for inbalenced data")
plt.show()
示例#9
0
def rocScan(varlist,
            scan_targets,
            labels,
            ylabels,
            data,
            plotpath='',
            x_min=0.,
            x_max=1.0,
            y_min=0.0,
            y_max=1.0,
            x_log=False,
            y_log=False,
            rejection=False,
            x_label='False positive rate',
            y_label='True positive rate',
            linestyles=[],
            colorgrouping=-1,
            extra_lines=[],
            atlas_x=-1,
            atlas_y=-1,
            simulation=False,
            textlist=[]):
    '''
    Creates a set of ROC curve plots by scanning over the specified variables.
    One set is created for each target (neural net score dataset).
    
    varlist: a list of rocVar instances to scan over
    scan_targets: a list of neural net score datasets to use
    labels: a list of target names (strings); must be the same length as scan_targets
    '''

    rocs = buildRocs(varlist, scan_targets, labels, ylabels, data)

    for target_label in labels:
        for v in varlist:
            # prepare matplotlib figure
            plt.cla()
            plt.clf()
            fig = plt.figure()
            fig.patch.set_facecolor('white')
            plt.plot([0, 1], [0, 1], 'k--')

            for label in v.labels:
                # first generate ROC curve
                x = rocs[target_label + label]['x']
                y = rocs[target_label + label]['y']
                var_auc = auc(x, y)
                if not rejection:
                    plt.plot(x,
                             y,
                             label=label + ' (area = {:.3f})'.format(var_auc))
                else:
                    plt.plot(y,
                             1. / x,
                             label=label + ' (area = {:.3f})'.format(var_auc))

            # plt.title('ROC Scan of '+target_label+' over '+v.latex)
            if x_log:
                plt.xscale('log')
            if y_log:
                plt.yscale('log')
            plt.xlim(x_min, x_max)
            plt.ylim(y_min, y_max)

            plt.x_label(x_label)
            plt.y_label(y_label)

            #ampl.set_xlabel(x_label)
            #ampl.set_ylabel(y_label)
            plt.legend()

            drawLabels(fig, atlas_x, atlas_y, simulation, textlist)

            if plotpath != '':
                plt.savefig(plotpath + 'roc_scan_' + target_label + '_' +
                            v.name + '.pdf')
            plt.show()
示例#10
0
# compile the model
model.compile(locc = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])

# train the model
hist = model.fit(x_train, y_train_one_hot, match_size = 256, epochs = 10, validation_split = 0.2)

# evaluate model using test data set 
model.evaluate(x_test, y_test_one_hot)[1]

# visualize the model's accuracy
plt.plot(hist.history['accuracy'])
plt.plot(hist.history['val_accuracy'])
plt.title('Model Accuracy')
plt.x_label('Epoch')
plt.y_label('Accuracy')
plt.legend(['Train', 'Val'], loc = 'upper left')
plt.show()

# visualize the models loss
plt.plot(hist.history['loss'])
plt.plot(hist.history['val_loss'])
plt.title('Model Loss')
plt.x_label('Epoch')
plt.y_label('Loss')
plt.legend(['Train', 'Val'], loc = 'upper right')
plt.show()

# test the model with an example
from google.colab import files
uploaded = files.upload()
示例#11
0
# fitting the RNN to training set
regressor.fit(X_train, y_train, batch_size=32, epochs=200)

#####################################################
## Part-3: MAking prediction $ visualising result ##
###################################################
test_set = pd.read_csv('Google_Stock_Price_Test.csv')
X_test = test_set.iloc[:, 1:2]

# scaling the X_test
input = sc.transform(X_test)

# before predictiong , converting in 3-D
input = np.reshape(input, (20, 1, 1))

# now predicting the next price
y_pred = regressor.predict(input)

# since we are getting the scaled output so, using inverse_transform()
y_pred = sc.inverse_transform(y_pred)

# Visualization of result
plt.plot(X_test, color='red', label="Real Google Price")
plt.plot(y_pred, color='blue', label="Predicted Google Price")
plt.title("Price_Prediction")
plt.x_label("Time")
plt.y_label("Stock-Price-Google")
plt.legend()
plt.show()