示例#1
0
    def format_and_show_graph(self, dates_list):
        """Formats and shows the graph."""

        plt.yaxis()

        plt.xticks(rotation=30, size=10)
        plt.show()
示例#2
0
def plot_scatter_of_body(dataframe, feature_1="Body", feature_2="Score"):
    fig, ax = plt.subplots(1, figsize=(30, 6))
    dataframe["Title_len"] = dataframe[feature_1].str.split().str.len()
    dataframe = dataframe.groupby("Title_len")[feature_2].mean().reset_index()

    x = dataframe["Title_len"]
    y = dataframe["Score"]

    sns.scatterplot(x=x, y=y, data=dataframe, legend="brief", ax=ax)
    plt.title("Average Upvote by Question Body Length")
    plt.yaxis("Average Upvote")
    plt.xaxis("Question Body Length")
    plt.plot()
示例#3
0
rangeN = range(1, numberSubIntervalls)

t, w = np.polynomial.legendre.leggauss(
    order)  # t in [-1,1], w weight, ordre 50

plt.figure()
for epsilon in [1, 2, 3]:
    print epsilon
    a1 = np.array([-epsilon, -1.0])
    b1 = np.array([-epsilon, +1.0])

    a2 = np.array([epsilon, -1.0])
    b2 = np.array([epsilon, +1.0])

    int1 = [a1, b1]
    int2 = [a2, b2]

    errSing = np.array([])
    for n in rangeN:
        errSing = np.append(errSing, calculateError(int1, int2, n, order, t,
                                                    w))

#print "coucou", calculateInt(int1, int2, order, t, w)
    print(np.log(errSing))
    plt.plot(np.log(rangeN), np.log(errSing), label=epsilon)
    plt.hold(True)
    plt.legend()
plt.title("singular function for different eps")
plt.yaxis("error")
plt.xaxis("ln(number sub intervalls)")
                 feed_dict={
                     x: trainX[start:end],
                     y: trainY[start:end]
                 })

        if ((i + 1) % 7 == 0):
            [mseloss, crossError] = sess.run([loss, crossLoss],
                                             feed_dict={
                                                 x: trainX[start:end],
                                                 y: trainY[start:end]
                                             })
            mseValues.append(mseloss)
            crossValues.append(crossError)

            [mseClass, crossClass] = sess.run([mseClassError, crossClassError],
                                              feed_dict={
                                                  x: trainX[start:end],
                                                  y: trainY[start:end]
                                              })

            mseClassValues.append(mseClass)
            crossClassValues.append(1 - crossClass)

plt.title("Accuracy of Linear vs Logistic")
plt.xaxis("epochs")
plt.yaxis("accuracy")
plt.plot(mseClassValues, label="linear")
plt.plot(crossClassValues, label="logistic")
plt.legend()
plt.show()
示例#5
0
import numpy as np
import matplotlib.pyplot as plt


def f(x):
    return np.where(x < 0, 0.0, 1.0)


n = 10000
x = np.linspace(-10, 10, n + 1)

plt.plot(x, f(x))
plt.xlabel("x")
plt.ylabel("y")
plt.yaxis(-0.1, 1.1)
plt.title("plot")
plt.legend(["heaviside"])
plt.show()
    print(
        i,
        sqrt(np.abs(np.mean(test_scaled[:, 1, i]**2 - predictions[:, i]**2))) /
        sqrt(np.mean(test_scaled[:, 1, i]**2)))

out = 13

#pyplot.plot(series[out])
#pyplot.show()

#pyplot.plot(train_scaled_x,train_scaled[:,0,out])
#pyplot.plot(test_scaled_x,test_scaled[:,0,out])
#pyplot.plot(test_scaled_x,predictions[:,out])
#pyplot.show()

pyplot.plot(test_scaled_x, test_scaled[:, 0, out])
pyplot.plot(test_scaled_x, predictions[:, out])
pyplot.xaxis('time (minutes)')
pyplot.yaxis('B (nT)')
pyplot.show()

#pyplot.plot(nrmse)
#pyplot.show()

# track loss vs records
# array output/prediction
# null hypothesis

# check noise in data. Take diff with stencil?
# improve data saving technique
x = data.iloc[:, 1:2].values
y = data.iloc[:, 2].values

from sklearn.preprocessing import PolynomialFeatures
p = PolynomialFeatures(degree=4)
x_poly = p.fit_transform(x)

from sklearn.linear_model import LinearRegression
r = LinearRegression()
r.fit(x_poly, y)

plt.scatter(x, y, color='red')
plt.plot(x, r.predict(p.fit_transform(x)), color='blue')
plt.title("Position v/s salaries")
plt.xaxis("positions")
plt.yaxis("salaries")
plt.show()

#making the curve more smooother
x_grid = np.arange(min(x), max(x), 0.1)
x_grid = x_grid.reshape(len(x_grid), 1)

plt.scatter(x, y, color='red')
plt.plot(x_grid, r.predict(p.fit_transform(x_grid)), color='blue')
plt.title("Position v/s salaries")
plt.xlabel("positions")
plt.ylabel("salaries")
plt.show()

x_ans = np.array(6.5)
x_ans = x_ans.reshape(1, 1)