def plot_all_trajs(ax: plt.axis, df: pd.DataFrame, radii: dict, 
                   plot_rings=False, relative=False):
    """Plot all of the trajectories in the input DataFrame on the given axis.

    Args:
        ax: Matplotlib axis on which we want to plot.
        df: DataFrame containing trajectory data.
        radii: Dictionary with inner and outer radii of N-ring.
        plot_rings: Boolean flag that plots outer and inner circles of N-ring if True.
    """

    cmap = sns.cubehelix_palette(dark=.3, light=.8, as_cmap=True)
    outer_rad, inner_rad = extract_radii(radii)
    kwargs = {'data': df, 'legend': False, 'palette': cmap, 'edgecolor': None, 's': 20}
    
    if relative is False:
        ax = sns.scatterplot(x='X_1', y='Y_1', hue='Trial', **kwargs)
        sns.scatterplot(x='X_2', y='Y_2', hue='Trial', **kwargs)
    else:
        ax = sns.scatterplot(x='rel_X', y='rel_Y', hue='Trial', **kwargs)                    

    if plot_rings is True:
            
        outer_circle = plt.Circle((0, 0), outer_rad, color='blue', fill=False)
        ax.add_artist(outer_circle)

        inner_circle = plt.Circle((0, 0), inner_rad, color='blue', fill=False)
        ax.add_artist(inner_circle)

    ax.axis('equal')
    # ax.set_xlim([-2.0, 2.0])
    # ax.set_ylim([-2.0, 2.0])
    ax.set_xlabel('relative x position' if relative is True else 'x position')
    ax.set_ylabel('relative y position' if relative is True else 'y position')
示例#2
0
def word_group_visualization(
    transformed_word_embeddings: np.ndarray,
    words: np.ndarray,
    word_groups: dict,
    xlabel: str,
    ylabel: str,
    emphasis_words: list = None,
    alpha: float = 1,
    non_group_words_color: str = "#ccc",
    scatter_set_rasterized: bool = False,
    rasterization_threshold: int = 1000,
    ax: plt.axis = None,
    show_plot: bool = True,
) -> None:
    """
    Visualizes one or more word groups by plotting its word embeddings in 2D.

    Parameters
    ----------
    transformed_word_embeddings : np.ndarray
        Transformed word embeddings.
    words : np.ndarray
        Numpy array containing all words from vocabulary.
    word_groups : dict
        Dictionary containing word groups to visualize.
    xlabel : str
        X-axis label.
    ylabel : str
        Y-axis label.
    emphasis_words : list, optional
        List representing words to emphasize in the visualization (defaults to None).
        Entries can be either be strings (words) or tuples, consisting of the word, x-offset
        and y-offset.
    alpha : float
        Scatter plot alpha value (defaults to 1).
    non_group_words_color : str
        Color for words outside groups (defaults to #ccc).
    scatter_set_rasterized : bool
        Whether or not to enable rasterization on scatter plotting (defaults to False).
    rasterization_threshold : int
        The least number of data points to enable rasterization, given that
        `scatter_set_rasterized` is set to True (defaults to 1000).
    ax : plt.axis
        Axis (defaults to None).
    show_plot : bool
        Whether or not to call plt.show() (defaults to True).
    """
    # Filter and restrict words in word groups
    word_group_words_restricted = {}
    for group_key, group_data in word_groups.items():
        group_words = group_data["words"]
        group_words = np.array([word for word in group_words if word in words])
        group_words_indices = np.array(
            [np.where(words == word)[0][0] for word in group_words])
        group_word_embeddings = transformed_word_embeddings[
            group_words_indices]
        boundaries = group_data.get("boundaries", {})
        if boundaries.get("xmin") is None:
            boundaries["xmin"] = group_word_embeddings[:, 0].min()
        if boundaries.get("xmax") is None:
            boundaries["xmax"] = group_word_embeddings[:, 0].max()
        if boundaries.get("ymin") is None:
            boundaries["ymin"] = group_word_embeddings[:, 1].min()
        if boundaries.get("ymax") is None:
            boundaries["ymax"] = group_word_embeddings[:, 1].max()

        group_word_embeddings_boundaries_mask = [
            (boundaries["xmin"] <= word_vec[0] <= boundaries["xmax"])
            and (boundaries["ymin"] <= word_vec[1] <= boundaries["ymax"])
            for i, word_vec in enumerate(group_word_embeddings)
        ]
        word_group_words_restricted[group_key] = group_words[
            group_word_embeddings_boundaries_mask]

    # Find words not in groups
    words_not_in_groups_mask = [
        i for i, word in enumerate(words)
        for group_words in word_group_words_restricted.values()
        if word not in group_words
    ]

    if ax is None:
        _, ax = plt.subplots(figsize=(12, 7))
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)

    # Plot non-group words
    non_grp_scatter_handle = ax.scatter(
        x=transformed_word_embeddings[words_not_in_groups_mask][:, 0],
        y=transformed_word_embeddings[words_not_in_groups_mask][:, 1],
        s=10,
        alpha=alpha,
        c=non_group_words_color,
    )
    if (scatter_set_rasterized
            and len(words_not_in_groups_mask) >= rasterization_threshold):
        non_grp_scatter_handle.set_rasterized(True)

    # Plot group words
    for group_key, group_words in word_group_words_restricted.items():
        group_words_indices = np.array(
            [np.where(words == word)[0][0] for word in group_words])
        group_word_embeddings = transformed_word_embeddings[
            group_words_indices]

        grp_scatter_handle = ax.scatter(
            x=group_word_embeddings[:, 0],
            y=group_word_embeddings[:, 1],
            s=15,
            alpha=alpha,
            c=word_groups[group_key]["color"],
            label=word_groups[group_key]["label"],
        )
        if (scatter_set_rasterized
                and len(group_word_embeddings) >= rasterization_threshold):
            grp_scatter_handle.set_rasterized(True)

    # Visualize emphasized words
    if emphasis_words is not None:
        emphasis_words = [(entry, 0, 0) if type(entry) == str else entry
                          for entry in emphasis_words]
        for emphasis_word, x_offset, y_offset in emphasis_words:
            word_group_key = None
            for group_key, group_data in word_groups.items():
                if emphasis_word in group_data["words"]:
                    word_group_key = group_key
                    break
            if word_group_key is None:
                word_color = non_group_words_color
            else:
                word_color = word_groups[group_key]["color"]

            word_idx = [
                i for i, word in enumerate(words) if word == emphasis_word
            ][0]
            emphasis_scatter_handle = ax.scatter(
                x=transformed_word_embeddings[word_idx, 0],
                y=transformed_word_embeddings[word_idx, 1],
                s=40,
                alpha=alpha,
                c=word_color,
            )
            if (scatter_set_rasterized
                    and len(emphasis_words) >= rasterization_threshold):
                emphasis_scatter_handle.set_rasterized(True)

            # Annotate emphasis word with a text box
            offsetbox = TextArea(emphasis_word)
            ab = AnnotationBbox(
                offsetbox,
                tuple(transformed_word_embeddings[word_idx]),
                xybox=(x_offset, 40 + y_offset),
                xycoords="data",
                boxcoords="offset points",
                arrowprops=dict(arrowstyle="->", color="black", linewidth=2),
            )
            ax.add_artist(ab)

    ax.legend()
    if show_plot:
        plt.show()
示例#3
0
 def drawPointToPoint(self, target_axis: plt.axis, init_axis: plt.axis, px1: np.array, px2: np.array, **kwargs):
     target_axis.plot([px1[0]],[px1[1]], 'rx', markersize=10)
     con = ConnectionPatch(xyA=px1, xyB=px2, coordsA="data", coordsB="data",
                     axesA=target_axis, axesB=init_axis, **kwargs)
     target_axis.add_artist(con)