示例#1
0
	def zernikesurface(self, label = True, zlim=[], matrix = False):
		"""
		------------------------------------------------
		zernikesurface(self, label_1 = True):

		Return a 3D Zernike Polynomials surface figure

		label_1: default show label

		------------------------------------------------
		"""
		theta = __np__.linspace(0, 2*__np__.pi, 100)
		rho = __np__.linspace(0, 1, 100)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		
		if zlim == []:
			v = max(abs(Z.max()),abs(Z.min()))
			ax.set_zlim(-v*5, v*5)
			cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
		else:
			ax.set_zlim(zlim[0], zlim[1])
			cset = ax.contourf(X, Y, Z, zdir='z', offset=zlim[0], cmap=__cm__.RdYlGn)

		ax.zaxis.set_major_locator(__LinearLocator__(10))
		ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		fig.colorbar(surf, shrink=1, aspect=30)


		p2v = round(__tools__.peak2valley(Z),5)
		rms1 = round(__tools__.rms(Z),5)

		label_1 = self.listcoefficient()[0]+"P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
		if label == True:
			__plt__.title('Zernike Polynomials Surface',fontsize=18)
			ax.text2D(0.02, 0.1, label_1, transform=ax.transAxes,fontsize=14)
		else:
			pass
		__plt__.show()
		
		if matrix == True:
			return Z
		else:
			pass
示例#2
0
	def zernikesurface(self, label = True, zlim=[], matrix = False):
		"""
		------------------------------------------------
		zernikesurface(self, label_1 = True):

		Return a 3D Zernike Polynomials surface figure

		label_1: default show label

		------------------------------------------------
		"""
		theta = __np__.linspace(0, 2*__np__.pi, 100)
		rho = __np__.linspace(0, 1, 100)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __interferometer__.__zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)

		if zlim == []:
			v = max(abs(Z.max()),abs(Z.min()))
			ax.set_zlim(-v*5, v*5)
			cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
		else:
			ax.set_zlim(zlim[0], zlim[1])
			cset = ax.contourf(X, Y, Z, zdir='z', offset=zlim[0], cmap=__cm__.RdYlGn)

		ax.zaxis.set_major_locator(__LinearLocator__(10))
		ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		fig.colorbar(surf, shrink=1, aspect=30)


		p2v = round(__tools__.peak2valley(Z),5)
		rms1 = round(__tools__.rms(Z),5)

		label_1 = self.listcoefficient()[0]+"P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
		if label == True:
			__plt__.title('Zernike Polynomials Surface',fontsize=18)
			ax.text2D(0.02, 0.1, label_1, transform=ax.transAxes,fontsize=14)
		else:
			pass
		__plt__.show()

		if matrix == True:
			return Z
		else:
			pass
示例#3
0
def spherical_surf(l1):
	R = 1.02
	l1 = l1  #surface matrix length
	theta = __np__.linspace(0, 2*__np__.pi, l1)
	rho = __np__.linspace(0, 1, l1)
	[u,r] = __np__.meshgrid(theta,rho)
	X = r*__cos__(u)
	Y = r*__sin__(u)
	Z = __sqrt__(R**2-r**2)-__sqrt__(R**2-1)
	v_1 = max(abs(Z.max()),abs(Z.min()))

	noise = (__np__.random.rand(len(Z),len(Z))*2-1)*0.05*v_1
	Z = Z+noise
	fig = __plt__.figure(figsize=(12, 8), dpi=80)
	ax = fig.gca(projection='3d')
	surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,\
								linewidth=0, antialiased=False, alpha = 0.6)
	v = max(abs(Z.max()),abs(Z.min()))
	ax.set_zlim(-1, 2)
	ax.zaxis.set_major_locator(__LinearLocator__(10))
	ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
	cset = ax.contourf(X, Y, Z, zdir='z', offset=-1, cmap=__cm__.RdYlGn)
	fig.colorbar(surf, shrink=1, aspect=30)
	__plt__.title('Test Surface: Spherical surface with some noise',fontsize=16)
	__plt__.show()

	#Generate test surface matrix from a detector
	x = __np__.linspace(-1, 1, l1)
	y = __np__.linspace(-1, 1, l1)
	[X,Y] = __np__.meshgrid(x,y)
	Z = __sqrt__(R**2-(X**2+Y**2))-__sqrt__(R**2-1)+noise
	for i in range(len(Z)):
		for j in range(len(Z)):
			if x[i]**2+y[j]**2>1:
				Z[i][j]=0
	return Z
示例#4
0
def fitting(Z,n,remain3D=False,remain2D=False,barchart=False,interferogram=False,removepiston=True):
	"""
	------------------------------------------------
	fitting(Z,n)

	Fitting an aberration to several orthonormal Zernike
	polynomials.

	Return: n-th Zernike coefficients for a fitting surface aberration
			Zernike coefficients barchart
			Remaining aberration
			Fiting surface plot
	Input: 
	Z: A surface or aberration matrix measure from inteferometer
	   or something else.

	n: How many order of Zernike Polynomials you want to fit

	reamin(default==Flase): show the surface after remove fitting
	aberrations.

	removepiston: if remove piston, default = True
	------------------------------------------------
	"""


	fitlist = []
	l = len(Z)
	x2 = __np__.linspace(-1, 1, l)
	y2 = __np__.linspace(-1, 1, l)
	[X2,Y2] = __np__.meshgrid(x2,y2)
	r = __np__.sqrt(X2**2 + Y2**2)
	u = __np__.arctan2(Y2, X2)
	for i in range(n):
		C = [0]*i+[1]+[0]*(37-i-1)
		ZF = __zernikepolar__(C,r,u)
		for i in range(l):
			for j in range(l):
				if x2[i]**2+y2[j]**2>1:
					ZF[i][j]=0
		a = sum(sum(Z*ZF))*2*2/l/l/__np__.pi
		fitlist.append(round(a,3))


	l1 = len(fitlist)
	fitlist = fitlist+[0]*(37-l1)
	Z_new = Z - __zernikepolar__(fitlist,r,u)
	for i in range(l):
		for j in range(l):
			if x2[i]**2+y2[j]**2>1:
				Z_new[i][j]=0

	#plot bar chart of zernike
	if barchart == True:
		fitlist1 = fitlist[0:n]
		index = __np__.arange(n)
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		xticklist = []
		width = 0.6
		for i in index:
			xticklist.append('Z'+str(i+1))
		barfigure = __plt__.bar(index, fitlist1, width,color = '#2E9AFE',edgecolor = '#2E9AFE')
		__plt__.xticks( index+width/2, xticklist )
		__plt__.xlabel('Zernike Polynomials',fontsize=18)  
		__plt__.ylabel('Coefficient',fontsize=18)  
		__plt__.title('Fitting Zernike Polynomials Coefficient',fontsize=18)  

		__plt__.show()  
	else:
		pass


	if remain3D == True:
		
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X2, Y2, Z_new, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		v = max(abs(Z.max()),abs(Z.min()))
		ax.set_zlim(-v, v)
		ax.zaxis.set_major_locator(__LinearLocator__(10))
		ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		cset = ax.contourf(X2, Y2, Z_new, zdir='z', offset=-v, cmap=__cm__.RdYlGn)
		fig.colorbar(surf, shrink=1, aspect=30)
		__plt__.title('Remaining Aberration',fontsize=18)
		p2v = round(__tools__.peak2valley(Z_new),5)
		rms1 = round(__tools__.rms(Z_new),5)
		label_new = "P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
		ax.text2D(0.02, 0.1,label_new, transform=ax.transAxes)
		__plt__.show()		
	else:
		pass

	if remain2D == True:
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		ax = fig.gca()
		im = __plt__.pcolormesh(X2, Y2, Z_new, cmap=__cm__.RdYlGn)
		__plt__.colorbar()
		__plt__.title('Remaining Aberration',fontsize=18)
		ax.set_aspect('equal', 'datalim')
		__plt__.show()
	else:
		pass

	if interferogram == True:
		zernike_coefficient = Coefficient(fitlist)
		__interferometer__.twyman_green(zernike_coefficient)
	else:
		pass
	if removepiston == True:
		fitlist[0] = 0
	else:
		pass
	C = Coefficient(fitlist)  #output zernike Coefficient class
	__tools__.zernikeprint(fitlist)
	return fitlist,C
示例#5
0
def fitting(Z,n,remain3D=False,remain2D=False,barchart=False,interferogram=False,removepiston=True):
	"""
	------------------------------------------------
	fitting(Z,n)

	Fitting an aberration to several orthonormal Zernike
	polynomials.

	Return: n-th Zernike coefficients for a fitting surface aberration
			Zernike coefficients barchart
			Remaining aberration
			Fiting surface plot
	Input:
	Z: A surface or aberration matrix measure from inteferometer
	   or something else.

	n: How many order of Zernike Polynomials you want to fit

	reamin(default==Flase): show the surface after remove fitting
	aberrations.

	removepiston: if remove piston, default = True
	------------------------------------------------
	"""


	fitlist = []
	l = len(Z)
	x2 = __np__.linspace(-1, 1, l)
	y2 = __np__.linspace(-1, 1, l)
	[X2,Y2] = __np__.meshgrid(x2,y2)
	r = __np__.sqrt(X2**2 + Y2**2)
	u = __np__.arctan2(Y2, X2)
	for i in range(n):
		C = [0]*i+[1]+[0]*(37-i-1)
		ZF = __interferometer__.__zernikepolar__(C,r,u)
		for i in range(l):
			for j in range(l):
				if x2[i]**2+y2[j]**2>1:
					ZF[i][j]=0
		a = sum(sum(Z*ZF))*2*2/l/l/__np__.pi
		fitlist.append(round(a,3))


	l1 = len(fitlist)
	fitlist = fitlist+[0]*(37-l1)
	Z_new = Z - __interferometer__.__zernikepolar__(fitlist,r,u)
	for i in range(l):
		for j in range(l):
			if x2[i]**2+y2[j]**2>1:
				Z_new[i][j]=0

	#plot bar chart of zernike
	if barchart == True:
		fitlist1 = fitlist[0:n]
		index = __np__.arange(n)
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		xticklist = []
		width = 0.6
		for i in index:
			xticklist.append('Z'+str(i+1))
		barfigure = __plt__.bar(index, fitlist1, width,color = '#2E9AFE',edgecolor = '#2E9AFE')
		__plt__.xticks( index+width/2, xticklist )
		__plt__.xlabel('Zernike Polynomials',fontsize=18)
		__plt__.ylabel('Coefficient',fontsize=18)
		__plt__.title('Fitting Zernike Polynomials Coefficient',fontsize=18)

		__plt__.show()
	else:
		pass


	if remain3D == True:

		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X2, Y2, Z_new, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		v = max(abs(Z.max()),abs(Z.min()))
		ax.set_zlim(-v, v)
		ax.zaxis.set_major_locator(__LinearLocator__(10))
		ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		cset = ax.contourf(X2, Y2, Z_new, zdir='z', offset=-v, cmap=__cm__.RdYlGn)
		fig.colorbar(surf, shrink=1, aspect=30)
		__plt__.title('Remaining Aberration',fontsize=18)
		p2v = round(__tools__.peak2valley(Z_new),5)
		rms1 = round(__tools__.rms(Z_new),5)
		label_new = "P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
		ax.text2D(0.02, 0.1,label_new, transform=ax.transAxes)
		__plt__.show()
	else:
		pass

	if remain2D == True:
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		ax = fig.gca()
		im = __plt__.pcolormesh(X2, Y2, Z_new, cmap=__cm__.RdYlGn)
		__plt__.colorbar()
		__plt__.title('Remaining Aberration',fontsize=18)
		ax.set_aspect('equal', 'datalim')
		__plt__.show()
	else:
		pass

	if interferogram == True:
		zernike_coefficient = Coefficient(fitlist)
		__interferometer__.twyman_green(zernike_coefficient)
	else:
		pass
	if removepiston == True:
		fitlist[0] = 0
	else:
		pass
	C = Coefficient(fitlist)  #output zernike Coefficient class
	__tools__.zernikeprint(fitlist)
	return fitlist,C
示例#6
0
文件: utils_psf.py 项目: leehsiu/UABC
def lens_param_to_psf():
    import numpy as __np__
    from numpy import sqrt as __sqrt__
    from numpy import cos as __cos__
    from numpy import sin as __sin__
    import matplotlib.pyplot as __plt__
    from matplotlib import cm as __cm__
    from matplotlib.ticker import LinearLocator as __LinearLocator__
    from matplotlib.ticker import FormatStrFormatter as __FormatStrFormatter__
    from mpl_toolkits.mplot3d import Axes3D
    from numpy.fft import fftshift as __fftshift__
    from numpy.fft import ifftshift as __ifftshift__
    from numpy.fft import fft2 as __fft2__

    def __apershow__(obj):
        obj = -abs(obj)
        __plt__.imshow(obj)
        __plt__.set_cmap('Greys')
        __plt__.show()

    l1 = 100
    # Generate test surface matrix from a detector
    x = __np__.linspace(-1, 1, l1)
    y = __np__.linspace(-1, 1, l1)
    [X, Y] = __np__.meshgrid(x, y)
    r = __sqrt__(X**2 + Y**2)
    Z = __sqrt__(14) * (8 * X**4 - 8 * X**2 * r**2 + r**4) * (6 * r**2 - 5)
    for i in range(len(Z)):
        for j in range(len(Z)):
            if x[i]**2 + y[j]**2 > 1:
                Z[i][j] = 0

    fig = __plt__.figure(1)
    ax = fig.gca(projection='3d')
    surf = ax.plot_surface(X,
                           Y,
                           Z,
                           rstride=1,
                           cstride=1,
                           cmap=__cm__.RdYlGn,
                           linewidth=0,
                           antialiased=False,
                           alpha=0.6)

    v = max(abs(Z.max()), abs(Z.min()))
    ax.set_zlim(-v * 5, v * 5)
    cset = ax.contourf(X, Y, Z, zdir='z', offset=-v * 5, cmap=__cm__.RdYlGn)
    ax.zaxis.set_major_locator(__LinearLocator__(10))
    ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
    fig.colorbar(surf, shrink=1, aspect=30)
    __plt__.show()

    d = 800
    A = __np__.zeros([d, d])
    A[d // 2 - 49:d // 2 + 51, d // 2 - 49:d // 2 + 51] = Z
    __plt__.imshow(A)
    __plt__.show()

    abbe = __np__.exp(1j * 2 * __np__.pi * A)
    for i in range(len(abbe)):
        for j in range(len(abbe)):
            if abbe[i][j] == 1:
                abbe[i][j] = 0
    fig = __plt__.figure(2)
    AP = abs(__fftshift__(__fft2__(__fftshift__(abbe))))**2
    AP = AP / AP.max()

    __plt__.imshow(AP)
    __plt__.show()
示例#7
0
Z = __sqrt__(14)*(8*X**4-8*X**2*r**2+r**4)*(6*r**2-5)
for i in range(len(Z)):
	for j in range(len(Z)):
		if x[i]**2+y[j]**2>1:
			Z[i][j]=0

fig = __plt__.figure(1)
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
    linewidth=0, antialiased=False, alpha = 0.6)

v = max(abs(Z.max()),abs(Z.min()))
ax.set_zlim(-v*5, v*5)
cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
ax.zaxis.set_major_locator(__LinearLocator__(10))
ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
fig.colorbar(surf, shrink=1, aspect=30)
__plt__.show()

d = 400
A = __np__.zeros([d,d])
A[d/2-49:d/2+51,d/2-49:d/2+51] = Z
__plt__.imshow(A)
__plt__.show()

abbe = __np__.exp(1j*2*__np__.pi*A)
for i in range(len(abbe)):
	for j in range(len(abbe)):
		if abbe[i][j]==1:
			abbe[i][j]=0
fig = __plt__.figure(2)