示例#1
0
 def __init__(self, container, has_xerr=False, has_yerr=False, **kws):
     ''' '''
     self.offset = kws.pop('offset', 0)
     self.annotated = kws.pop('annotate', True)
     #haunted = kws.pop('haunted', True)
     
     NamedErrorbarContainer.__init__(self, container, has_xerr, has_yerr, **kws)
     
     #by default the container is self-linked
     self.linked = [self]
     
     #Save copy of original transform
     markers = self[0]
     self._original_transform = markers.get_transform()
     
     #make the lines pickable
     if not markers.get_picker():
         markers.set_picker(5)
     
     #Initialize offset texts
     ax = markers.axes
     self.text_trans = btf(ax.transAxes, ax.transData)
     ytxt = markers.get_ydata().mean()
     self.annotation = ax.text(1.005, ytxt, '')
                                 #transform=self.text_trans )
     
     #shift to the given offset (default 0)
     self.shift(self.offset)
示例#2
0
    def __init__(self, *args, **kws):

        # self.xtrans =  kws.pop( 'xtrans', IdentityTransform() )
        # self.ytrans =  kws.pop( 'ytrans', IdentityTransform() )
        self.aux_trans = kws.pop("aux_trans", btf(IdentityTransform(), IdentityTransform()))
        # embed()
        SubplotHost.__init__(self, *args, **kws)  # self.__class__, self

        # Initialize the parasite axis
        self.parasite = self.twin(self.aux_trans)  # ax2 is responsible for "top" axis and "right" axis
示例#3
0
    def __init__(self, *args, **kw):

        xax = kw.pop("xax", "f")
        self.xtrans = ReciprocalTransform()  # TODO: SEPARATING TRANSFORMS
        aux_trans = kw.pop("aux_trans", btf(ReciprocalTransform(), IdentityTransform()))

        DualAxes.__init__(self, *args, aux_trans=aux_trans, **kw)  # self.__class__, self

        if xax.lower().startswith("f"):
            self.frequency_axis, self.period_axis = self.xaxis, self.parasite.xaxis
        else:
            self.period_axis, self.frequency_axis = self.xaxis, self.parasite.xaxis
示例#4
0
 def __init__(self, artist, offset=(0.,0.), annotate=True, haunted=False, **kws):
     ''' '''
     
     #Line2D.__init__(self, *line.get_data())
     #self.update_from(line)
     self.ref_art = artist
     
     self.offset = np.array(offset)
     self.ref_point = offset
     self.annotated = annotate
     #haunted = 
     
     self._original_transform = artist.get_transform()
     
     #make the lines pickable
     if not artist.get_picker():
         artist.set_picker(fpicker)
     
     #
     #self.ref_art.set_animated(True)
     #self._draw_on = True
     
     #Manage with ConnectionMixin?
     self.observers = {}
     self.validators = {}
     #self.observers_active = True
     self.cnt = 0
     self.vnt = 0
     
     #Initialize offset texts
     ax = artist.axes
     if self.annotated:
         self.text_trans = btf(ax.transAxes, ax.transData)
         self.ytxt = artist.get_ydata().mean()
         self.annotation = ax.text(1.005, self.ytxt, '')
         self.on_changed(self.shift_text)
     
     if haunted:
         self.haunt()
     
     #self._locked = np.zeros(2, bool)
     self._locked_on = np.empty(2)
     self._locked_on.fill(None)
     
     #shift to the given offset (default 0)
     self.shift(self.offset)
示例#5
0
def plot_timestamp_stats(delta_t,
                         t_cyc,
                         title='Timestamp differences',
                         tolerances=None):
    """
    Plots of timestamp differences to check for incorrectly timestamped
    data points. Plot shows delta_t vs frame number with histogram panel on the
    right. Integer multiples of the cycle time are also shown, as well as
    optionally, the interval limits for flagging points.
    """

    from matplotlib.transforms import blended_transform_factory as btf

    # plot delta_t as TS + histogram
    plot_props = dict(fmt='ro')
    hist_props = dict(log=True, bins=100)  # 10 millisecond time bins
    tsp = ts.plot(delta_t,
                  errorbar=plot_props,
                  hist=hist_props,
                  title=title,
                  axes_labels=[r'$N_{frame}$', r'$\Delta t$ (s)'],
                  draggable=False)
    ax, hax = tsp.fig.axes

    # Show multiples of t_cyc
    trans = btf(ax.transAxes, ax.transData)
    n = round(delta_t.max().item() / t_cyc) + 1

    y_off = 0.01
    for i in range(1, int(n)):
        ax.axhline(i * t_cyc, color='g', lw=2, alpha=0.5)
        ax.text(0.001, i * t_cyc + y_off, r'$%it_{cyc}$' % i, transform=trans)

        if tolerances is not None:
            # show selection limits
            ltol, utol = tolerances
            y0, y1 = i * t_cyc + ltol, (i + 1) * t_cyc - utol
            ax.axhline(y0, ls=':', color='royalblue')
            ax.axhline(y1, ls=':', color='royalblue')

    ax.set_ylim(0, n * t_cyc)
    return tsp
示例#6
0
 def __init__(self, line, **kws):
     ''' '''
     
     #Line2D.__init__(self, *line.get_data())
     #self.update_from(line)
     self.line = line
     
     self.offset = kws.pop('offset', 0)
     self.annotated = kws.pop('annotate', True)
     
     self._original_transform = line.get_transform()
     
     #make the lines pickable
     if not line.get_picker():
         line.set_picker(line_picker)
         
     #Initialize offset texts
     ax = line.axes
     self.text_trans = btf(ax.transAxes, ax.transData)
     ytxt = line.get_ydata().mean()
     self.annotation = ax.text(1.005, ytxt, '')
def f(t):
    s1 = np.sin(2 * np.pi * t)
    e1 = np.exp(-t)
    return np.abs(s1 * e1) + .05


t = np.arange(0.0, 5.0, 0.1)
s = f(t)
nse = rnd.normal(0.0, 0.3, t.shape) * s

fig = plt.figure(figsize=(12, 6))
vax = fig.add_subplot(121)
hax = fig.add_subplot(122)

vax.plot(t, s + nse, '^')
vax.vlines(t, [0], s)
vax.vlines([1, 2],
           0,
           1,
           transform=btf(vax.transData, vax.transAxes),
           colors='r')
vax.set_xlabel('time (s)')
vax.set_title('Vertical lines demo')

hax.plot(s + nse, t, '^')
hax.hlines(t, [0], s, lw=2)
hax.set_xlabel('time (s)')
hax.set_title('Horizontal lines demo')

plt.show()
示例#8
0
    qres = 10
    res = 50
    imin = np.empty(res)
    Q = np.linspace(1e-2, 2, qres)
    Q = [0.01, 0.02, 0.05, 0.01, 0.2, 0.5, 1, 1.5, 2, 3,
         5]  # , 7, 10, 20, 50, 100, 200, 500, 1e3, 1e4]
    Th_crit = np.empty(len(Q))
    for j, q in enumerate(Q):
        ic = InclinationConstraints(q)
        Th_crit[j] = ic.θ_crit
        # print(Table(dict(q=ic.q, ic.φmax=φmax)))

        # linspace not the best choice for hyperbolic relation
        Φ = ic.φmax * np.sin(np.linspace(0, np.pi / 2, res))
        i = np.vectorize(ic.i, 'f')(Φ)

        # plot
        ax.plot(np.degrees(i), np.degrees(Φ), '-')
        # ax.plot(np.sin(i), np.cos(Φ), 'o') # np.degrees(
        label = 'q=%.3g' % q
        ax.text(1,
                np.degrees(Φ[-1]),
                label,
                transform=btf(ax.transAxes, ax.transData))

    ax.set(xlabel='$i$', ylabel='$\phi$')
    ax.grid()
    # ax.legend()

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
示例#9
0
文件: lc.py 项目: apodemus/grafico
def hist(x, **kws):
    '''Plot a nice looking histogram.
    
    Parameters
    ----------
    x:          sequence
        Values to histogram
    
    Keywords
    --------
    axlabels:   sequence
        One or two axis labels (x,y)
    title:      str
        The figure title
    show_stats: str; option ('mode',)
        Show the given statistic of the distribution
    * Remaining keywords are passed to ax.hist
    
    Returns
    -------
    h:          tuple
        bins, values
    ax:         axes
    '''
    
    show_stats  = kws.pop('show_stats', ())
    fmt_stats   = kws.pop('fmt_stats', None)
    lbls        = kws.pop('axlabels', ())
    title       = kws.pop('title', '')
    #ax = ax.plot
    
    kws.setdefault('bins', 100)
    alpha = kws.setdefault('alpha', 0.5)
    Q = kws.pop('percentile', [])
    named_quantiles = {25 : 'lower  quartile',      #https://en.wikipedia.org/wiki/Quantile#Specialized_quantiles
                       50 : 'median',
                       75 : 'upper quartile'}
    
    
    #Create figure
    ax                      =       kws.pop('ax',        None)
    if ax is None:
        _, ax = plt.subplots(tight_layout=1, figsize=(12,8))
    #else:
        #fig = ax.figure
    
    #Plot the histogram
    h = ax.hist(x, **kws)

    #Make axis labels and title
    xlbl = lbls[0]      if len(lbls)     else ''
    ylbl = lbls[1]      if len(lbls)>1   else 'Counts'
    ax.set_xlabel(xlbl)
    ax.set_ylabel(ylbl)
    ax.set_title(title)
    ax.grid()

    #Extra stats #FIXME bad nomenclature
    if len(show_stats):
        from matplotlib.transforms import blended_transform_factory as btf
        stats = {}
    if 'min' in show_stats:
        stats['min'] = x.min()
        
    if 'max' in show_stats:
        stats['max'] = x.max()
    
    if 'mode' in show_stats:
        from scipy.stats import mode
        mr = mode(x)
        xmode = mr.mode.squeeze()
        stats['mode'] = xmode
    
    if 'mean' in show_stats:
        stats['mean'] = x.mean()
    if 'median' in show_stats:
        Q.append(50)
        
    if len(Q): #'percentile' in show_stats:
        P = np.percentile(x, Q)
        for p, q in zip(P, Q):
            name = named_quantiles.get(q, '$p_{%i}$' % q)
            stats[name] = p
    
    if fmt_stats is None:
        from recipes.string import minfloatfmt
        fmt_stats = minfloatfmt
    
    for key, val in stats.items():
        ax.axvline(val, color='r', alpha=alpha, ls='--', lw=2)
        trans = btf(ax.transData, ax.transAxes)
        txt = '%s = %s' % (key, fmt_stats(val))
        ax.text(val, 1, txt, 
                rotation='vertical', transform=trans, va='top', ha='right')
    
    #if 'percentile' in show_stats:
        #pass
    
    return h, ax
示例#10
0
文件: viz.py 项目: apodemus/obstools
 def twilight_txt(ax, s, t, **kw):
     ax.text(t.plot_date, 1, '{} {} SAST'.format(s, local_time_str(t)),
             rotation=90, ha='right', va='top',
             transform=btf(ax.transData, ax.transAxes),
             clip_on=True,
             **kw)
示例#11
0
文件: viz.py 项目: apodemus/obstools
    def setup_figure(self):
        
        self.figure = fig = plt.figure(figsize=(18,10))
        fig.subplots_adjust(top=0.94,
                            left=0.05,
                            right=0.85,
                            bottom=0.05)
        #setup axes with 
        self.ax = ax = VizAxes(fig, 111)
        lon = self.siteloc.longitude
        sid_trans = get_sid_trans(self.date, lon)
        aux_trans = btf(sid_trans, IdentityTransform())
        ax.parasite = ax.twin(aux_trans)
        
        
        ax.setup_ticks()
        fig.add_subplot(ax)
        
        #horizon line
        horizon = ax.axhline(0, 0, 1, color='0.85')
        
        #Shade twighlight / night
        for i, twilight in enumerate(zip(self.dusk.items(), self.dawn.items())):
            desc, times = zip(*twilight)
            ax.axvspan(*Time(times).plot_date, color=str(0.25*(3-i)))
            for words, t in zip(desc, times):
                self.twilight_txt(ax, words, t, color=str(0.33*i))

        #Indicate moonrise/set
        for rise_set, time in self.mooning.items():
            ax.axvline(time.plot_date, c='y', ls='--')
            self.twilight_txt(ax, rise_set, time, color='y')
        
        #TODO: enable picking for sun / moon
        sun_pl, = ax.plot(self.tp, self.sun.alt, 
                         'orangered', ls='none', markevery=2,
                         marker='o', ms=10,
                         label='sun')
        moon_pl, = ax.plot(self.tp, self.moon.alt,
                          'yellow',  ls='none',  markevery=2,
                          marker=self.get_moon_marker(), ms=10,
                          label='moon ({:.0%})'.format(self.moon_ill))
        
        
        #site / date info text
        ax.text(0, 1.04, self.date_info_txt(self.midnight),
                fontweight='bold', ha='left', transform=ax.transAxes)
        ax.text(1, 1.04, self.obs_info_txt(), fontweight='bold', 
                ha='right', transform=ax.transAxes)


        #setup axes
        #dloc = AutoDateLocator()
        #ax.xaxis.set_major_locator(dloc)
        #ax.xaxis.set_minor_locator(AutoMinorLocator())
        #ax.yaxis.set_minor_locator(AutoMinorLocator())
        #ax.yaxis.set_major_formatter(DegreeFormatter())
        #ax.xaxis.set_major_formatter(AutoDateFormatter(dloc))
        #ax.yaxis.set_minor_formatter(DegreeFormatter())
        
        just_before_sunset = (self.sunset - 0.25*u.h).plot_date
        just_after_sunrise = (self.sunrise + 0.25*u.h).plot_date
        ax.set_xlim(just_before_sunset, just_after_sunrise)
        ax.set_ylim(-10, 90)
        
        #which part of the visibility curves are visible within axes
        self._lt = (just_before_sunset < self.tp) & (self.tp < just_after_sunrise)
        
        #labels for axes
        ax.set_ylabel('Altitude', fontweight='bold')
        ax.parasite.set_ylabel('Airmass', fontweight='bold')
        #UTC / SAST     #TODO: align with labels instead of guessing coordinates...
        self.ax.text(1, -0.005, 'SAST',
                    color='g', fontweight='bold', 
                    va='top', ha='right',
                    transform=self.ax.transAxes)
        self.ax.text(1,-0.02, 'UTC', 
                    color='k', fontweight='bold',
                    va='top', ha='right', 
                    transform=self.ax.transAxes)
        #sidereal time label
        txt = self.ax.text(1, 1.01, 'Sid.T.',
                    color='c', fontweight='bold', 
                    va = 'bottom', ha='right',
                    transform=self.ax.transAxes)
        
        #sun / moon legend
        leg = self.ax.legend(bbox_to_anchor=(1.05, 0), loc=3,
                             borderaxespad=0., frameon=True)
        leg.get_frame().set_edgecolor('k')
        self.ax.add_artist(leg)
    
        ax.grid()
示例#12
0
from matplotlib.transforms import blended_transform_factory as btf
import numpy as np
import numpy.random as rnd


def f(t):
    s1 = np.sin(2 * np.pi * t)
    e1 = np.exp(-t)
    return np.abs(s1 * e1) + .05

t = np.arange(0.0, 5.0, 0.1)
s = f(t)
nse = rnd.normal(0.0, 0.3, t.shape) * s

fig = plt.figure(figsize=(12, 6))
vax = fig.add_subplot(121)
hax = fig.add_subplot(122)

vax.plot(t, s + nse, '^')
vax.vlines(t, [0], s)
vax.vlines([1, 2], 0, 1, transform=btf(vax.transData, vax.transAxes), colors='r')
vax.set_xlabel('time (s)')
vax.set_title('Vertical lines demo')

hax.plot(s + nse, t, '^')
hax.hlines(t, [0], s, lw=2)
hax.set_xlabel('time (s)')
hax.set_title('Horizontal lines demo')

plt.show()