示例#1
0
 def buildTriangulation( self, x, y ):
     trig=None
     if qgis_qhull_fails:
         trig=self._buildtrig_workaround(x,y)
     else:
         trig=Triangulation(x,y)
     analyzer=TriAnalyzer(trig)
     mask=analyzer.get_flat_tri_mask()
     trig.set_mask(mask)
     return trig
 def buildTriangulation( self, x, y ):
     trig=None
     if qgis_qhull_fails:
         trig=self._buildtrig_workaround(x,y)
     else:
         trig=Triangulation(x,y)
     analyzer=TriAnalyzer(trig)
     mask=analyzer.get_flat_tri_mask()
     trig.set_mask(mask)
     return trig
示例#3
0
def plot_dp(storm, datafile1, datafile2=None):

   #Single file netCDF reading
   ncf=datafile1
   nco=netCDF4.Dataset(ncf)

   #Get fields to plot
   lon=nco.variables['longitude'][:]
   lat=nco.variables['latitude'][:]
   timeindays=nco.variables['time'][:]
   dp=nco.variables['dp'][:]
   triangles=nco.variables['tri'][:,:]

   reflon=np.linspace(lon.min(),lon.max(),1000)
   reflat=np.linspace(lat.min(),lat.max(),1000)
   #reflon=np.linspace(-80.40, -74.75, 1000)
   #reflat=np.linspace(32.50, 36.60, 1000)
   #reflon=np.linspace(-75.70, -71.05, 1000)
   #reflat=np.linspace(38.50, 41.40, 1000)
   reflon,reflat=np.meshgrid(reflon,reflat)

   plt.figure(figsize = [6.4, 3.8])

   flatness=0.10  # flatness is from 0-.5 .5 is equilateral triangle
   triangles=triangles-1  # Correct indices for Python's zero-base
   tri=Triangulation(lon,lat,triangles=triangles)
   mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
   tri.set_mask(mask)

   # Loop through each time step and plot results
   for ind in range(0, len(timeindays)): 
      plt.clf()
      ax = plt.axes(projection=ccrs.Mercator())

      dt = datetime.datetime.combine(datetime.date(1990, 1, 1), datetime.time(0, 0)) + datetime.timedelta(days=timeindays[ind])
      dstr = datetime.date.strftime(dt,'%Y%m%d%H:%M:%S')
      dstr = dstr[0:8]+' '+dstr[8:17]
      print('Plotting '+dstr)

      par=np.double(dp[ind,:])
      tli=LinearTriInterpolator(tri,par)
      par_interp=tli(reflon,reflat)

      plt.pcolormesh(reflon,reflat,par_interp,vmin=0.0,vmax=360.0,shading='flat',cmap=plt.cm.jet, transform=ccrs.PlateCarree())
      cb = plt.colorbar()
      cb.ax.tick_params(labelsize=8)
      coast = cfeature.GSHHSFeature(scale='high',edgecolor='black',facecolor='none',linewidth=0.25)	
      ax.add_feature(coast)
      plt.xticks(fontsize=9)
      plt.yticks(fontsize=9)
      figtitle = storm.capitalize()+': Peak Dir (deg): '+dstr
      plt.title(figtitle)

      dtlabel = datetime.date.strftime(dt,'%Y%m%d%H%M%S')
      dtlabel = dtlabel[0:8]+'_'+dtlabel[8:14]
      filenm = 'nsem_'+storm+'_dp_'+dtlabel+'.png'
      plt.savefig(filenm,dpi=150,bbox_inches='tight',pad_inches=0.1)

      del(par)
      del(par_interp)
示例#4
0
    def plot_magnetic_field_contour(self, ax=None):
        if ax is None:
            fig, ax = plt.subplots()
        else:
            fig = plt.gcf()
        ax.set_aspect('equal')
        
        
        from matplotlib.tri import Triangulation, TriAnalyzer, UniformTriRefiner
        import matplotlib.cm as cm
            
        element_to_magnetic_field = self.magnetic_field_per_element()
        
        x = []
        y = []
        Z = []
        for group in self.mesh.elements_groups:
            for element in group.elements:
                x_center, y_center = element.center
                x.append(x_center)
                y.append(y_center)
                Z.append(element_to_magnetic_field[element].Norm())
        
        tri = Triangulation(x, y)
        
        
        #-----------------------------------------------------------------------------
        # Improving the triangulation before high-res plots: removing flat triangles
        #-----------------------------------------------------------------------------
        # masking badly shaped triangles at the border of the triangular mesh.
        min_circle_ratio = -1 
        mask = TriAnalyzer(tri).get_flat_tri_mask(min_circle_ratio)
        tri.set_mask(mask)
        
        # refining the data
        refiner = UniformTriRefiner(tri)
        subdiv = 3
        tri_refi, z_test_refi = refiner.refine_field(Z, subdiv=subdiv)
        
        levels = npy.arange(0., 1., 0.05)
        cmap = cm.get_cmap(name='Blues', lut=None)
        ax.tricontour(tri_refi, z_test_refi, levels=levels, #cmap=cmap,
                      linewidths=[2.0, 0.5, 1.0, 0.5])
#        ax.triplot(tri_refi, color='0.97')
#        ax.triplot(tri, color='0.7')
#        ax.tricontour(x, y, Z)
        return ax 
示例#5
0
def plot_samples(num):
    samples_hundred = BM_sampling_method(num)
    tri = Triangulation(samples_hundred[0], samples_hundred[1])
    random_gen = np.random.mtrand.RandomState(seed=127260)
    init_mask_frac = 0.0
    min_circle_ratio = .01
    subdiv = 3

    ntri = tri.triangles.shape[0]

    print 'hi'
    mask_init = np.zeros(ntri, dtype=np.bool)
    masked_tri = random_gen.randint(0, ntri, int(ntri * init_mask_frac))
    mask_init[masked_tri] = True
    tri.set_mask(mask_init)
    print 'hey'

    z_exp = experiment_res(tri.x, tri.y)
    print z_exp

    mask = TriAnalyzer(tri).get_flat_tri_mask(min_circle_ratio)
    tri.set_mask(mask)

    # refining the data
    refiner = UniformTriRefiner(tri)
    tri_refi, z_test_refi = refiner.refine_field(z_exp, subdiv=subdiv)

    # analytical 'results' for comparison
    z_expected = experiment_res(tri_refi.x, tri_refi.y)

    plt.tricontour(tri_refi,
                   z_expected,
                   levels=levels,
                   cmap=cmap,
                   linestyles='--')

    plt.show()
    x, y = np.mgrid[-1:1:0.001, -1:1:0.001]
    pos = np.empty(x.shape + (2, ))
    pos[:, :, 0] = x
    pos[:, :, 1] = y
    rv = multivariate_normal([0, 0], [[1.0, 0.0], [0.0, 1.0]])
    plt.contour(x, y, rv.pdf(pos))
mask = tri_y == 0 # t=0 are not valid datapoints
tri_y = tri_y[~mask]
tri_x = tri_x[~mask]
tri_z = tri_z[~mask]
# }}}
tri = Triangulation(tri_x,
        tri_y)
# {{{ refining the data -- see https://matplotlib.org/3.1.0/gallery/images_contours_and_fields/tricontour_smooth_delaunay.html#sphx-glr-gallery-images-contours-and-fields-tricontour-smooth-delaunay-py
#     I don't see a difference in the refined (tri_refi) vs. unrefined (tri),
#     but I'm quite possibly missing something, or it's more helpful in other cases
refiner = UniformTriRefiner(tri)
subdiv = 3  # Number of recursive subdivisions of the initial mesh for smooth
            # plots. Values >3 might result in a very high number of triangles
            # for the refine mesh: new triangles numbering = (4**subdiv)*ntri
tri_refi, tri_z_refi = refiner.refine_field(tri_z, subdiv=subdiv)
mask = TriAnalyzer(tri_refi).get_flat_tri_mask(10)
tri_refi = tri_refi.set_mask(~mask)
# }}}
figure(figsize=(5,15),
        facecolor=(1,1,1,0))
if not presentation:
    plot(tri_x,tri_y,'o',
            color='k',alpha=0.3)
    triplot(tri,
            color='k',alpha=0.3)
tricontourf(tri,tri_z,
        levels=linspace(tri_z.min(),tri_z.max(),100),
        #cmap=cm,
        )
colorbar()
xlabel('frequency\n($\\nu_{\\mu w}-%0.5f$ GHz)/ kHz'%(f_axis.mean()/1e9))
plt.figure(figsize = [6.4, 3.8])

#Loop through each time step and plot results
for ind in range(0, len(timeindays)): 
   dt = datetime.datetime.combine(datetime.date(1990, 1, 1), datetime.time(0, 0)) + datetime.timedelta(days=timeindays[ind])
   dstr = datetime.date.strftime(dt,'%Y%m%d%H:%M:%S')
   dstr = dstr[0:8]+' '+dstr[8:17]
   print('Plotting '+dstr)

   par=np.double(wlv[ind,:])
   par2=np.double(ucur[ind,:])
   par3=np.double(vcur[ind,:])

   flatness=0.10  # flatness is from 0-.5 .5 is equilateral triangle
   tri=Triangulation(lon,lat)
   mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
   tri.set_mask(mask)

   tli=LinearTriInterpolator(tri,par)
   par_interp=tli(reflon,reflat)
   tli2=LinearTriInterpolator(tri,par2)
   par2_interp=tli2(reflon,reflat)
   tli3=LinearTriInterpolator(tri,par3)
   par3_interp=tli3(reflon,reflat)

   #Set up a Mercator projection basemap
   plt.clf()
   #m=Basemap(projection='merc',llcrnrlon=reflon.min(),urcrnrlon=reflon.max(),\
   #    llcrnrlat=reflat.min(),urcrnrlat=reflat.max(),resolution='h')
   #x,y=m(reflon,reflat)
   x = reflon
示例#8
0
    def __init__(self, **kwargs):
        super(ContourMap, self).__init__(**kwargs)

        n_test = 200  # Number of test data points, tested from 3 to 5000 for subdiv=3

        subdiv = 3  # Number of recursive subdivisions of the initial mesh for smooth
        # plots. Values >3 might result in a very high number of triangles
        # for the refine mesh: new triangles numbering = (4**subdiv)*ntri

        init_mask_frac = 0.0  # Float > 0. adjusting the proportion of
        # (invalid) initial triangles which will be masked
        # out. Enter 0 for no mask.

        min_circle_ratio = .01  # Minimum circle ratio - border triangles with circle
        # ratio below this will be masked if they touch a
        # border. Suggested value 0.01 ; Use -1 to keep
        # all triangles.

        # Random points
        random_gen = np.random.mtrand.RandomState(seed=127260)
        x_test = random_gen.uniform(-1., 1., size=n_test)
        y_test = random_gen.uniform(-1., 1., size=n_test)
        z_test = experiment_res(x_test, y_test)

        # meshing with Delaunay triangulation
        tri = Triangulation(x_test, y_test)
        ntri = tri.triangles.shape[0]

        # Some invalid data are masked out
        mask_init = np.zeros(ntri, dtype=np.bool)
        masked_tri = random_gen.randint(0, ntri, int(ntri * init_mask_frac))
        mask_init[masked_tri] = True
        tri.set_mask(mask_init)

        #-----------------------------------------------------------------------------
        # Improving the triangulation before high-res plots: removing flat triangles
        #-----------------------------------------------------------------------------
        # masking badly shaped triangles at the border of the triangular mesh.
        mask = TriAnalyzer(tri).get_flat_tri_mask(min_circle_ratio)
        tri.set_mask(mask)

        # refining the data
        refiner = UniformTriRefiner(tri)
        tri_refi, z_test_refi = refiner.refine_field(z_test, subdiv=subdiv)

        # analytical 'results' for comparison
        z_expected = experiment_res(tri_refi.x, tri_refi.y)

        # for the demo: loading the 'flat' triangles for plot
        flat_tri = Triangulation(x_test, y_test)
        flat_tri.set_mask(~mask)

        #-----------------------------------------------------------------------------
        # Now the plots
        #-----------------------------------------------------------------------------
        # User options for plots
        plot_tri = True  # plot of base triangulation
        plot_masked_tri = True  # plot of excessively flat excluded triangles
        plot_refi_tri = False  # plot of refined triangulation
        plot_expected = False  # plot of analytical function values for comparison

        # Graphical options for tricontouring
        levels = np.arange(0., 1., 0.025)
        cmap = cm.get_cmap(name='Blues', lut=None)

        plt.figure()
        plt.gca().set_aspect('equal')
        plt.title("Filtering a Delaunay mesh\n" +
                  "(application to high-resolution tricontouring)")

        # 1) plot of the refined (computed) data countours:
        plt.tricontour(tri_refi,
                       z_test_refi,
                       levels=levels,
                       cmap=cmap,
                       linewidths=[2.0, 0.5, 1.0, 0.5])
        # 2) plot of the expected (analytical) data countours (dashed):
        if plot_expected:
            plt.tricontour(tri_refi,
                           z_expected,
                           levels=levels,
                           cmap=cmap,
                           linestyles='--')
        # 3) plot of the fine mesh on which interpolation was done:
        if plot_refi_tri:
            plt.triplot(tri_refi, color='0.97')
        # 4) plot of the initial 'coarse' mesh:
        if plot_tri:
            plt.triplot(tri, color='0.7')
        # 4) plot of the unvalidated triangles from naive Delaunay Triangulation:
        if plot_masked_tri:
            plt.triplot(flat_tri, color='red')

        plt.show()
示例#9
0
def plot_wnd(storm, datafile1, datafile2=None):

    #Single file netCDF reading
    ncf = datafile1
    nco = netCDF4.Dataset(ncf)

    #Get fields to plot
    lon = nco.variables['x'][:]
    lat = nco.variables['y'][:]
    timeinsec = nco.variables['time'][:]
    uwnd = nco.variables['windx'][:]
    vwnd = nco.variables['windy'][:]
    triangles = nco.variables['element'][:, :]

    reflon = np.linspace(lon.min(), lon.max(), 1000)
    reflat = np.linspace(lat.min(), lat.max(), 1000)
    #reflon=np.linspace(-80.40, -74.75, 1000)
    #reflat=np.linspace(32.50, 36.60, 1000)
    #reflon=np.linspace(-75.70, -71.05, 1000)
    #reflat=np.linspace(38.50, 41.40, 1000)
    #reflon=np.linspace(-80.40, -73.35, 1000)
    #reflat=np.linspace(32.50, 39.50, 1000)
    #reflon=np.linspace(-85.30, -78.50, 1000)
    #reflat=np.linspace(23.00, 29.70, 1000)
    reflon, reflat = np.meshgrid(reflon, reflat)

    plt.figure(figsize=[6.4, 3.8])

    flatness = 0.10  # flatness is from 0-.5 .5 is equilateral triangle
    triangles = triangles - 1  # Correct indices for Python's zero-base
    tri = Triangulation(lon, lat, triangles=triangles)
    mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
    tri.set_mask(mask)

    # Loop through each time step and plot results
    for ind in range(0, len(timeinsec)):
        besttrack = pd.read_csv(PARMnsem + '/storms/' + STORM +
                                '/best_track.txt',
                                header=None,
                                skiprows=4,
                                delim_whitespace=True)
        plt.clf()
        ax = plt.axes(projection=ccrs.Mercator())
        ax.set_extent([-100.00, -50.00, 4.00, 48.00], crs=ccrs.PlateCarree())
        #ax.set_extent([-80.40, -74.75, 32.50, 36.60], crs=ccrs.PlateCarree())
        #ax.set_extent([-80.40, -73.35, 32.50, 39.50], crs=ccrs.PlateCarree())
        #ax.set_extent([-85.30, -78.50, 23.00, 29.70], crs=ccrs.PlateCarree())

        dt = base_info.tide_spin_start_date + datetime.timedelta(
            seconds=timeinsec[ind])
        dstr = datetime.date.strftime(dt, '%Y%m%d%H:%M:%S')
        dstr = dstr[0:8] + ' ' + dstr[8:17]
        print('Plotting ' + dstr)

        par = np.sqrt(
            np.square(np.double(uwnd[ind, :])) +
            np.square(np.double(vwnd[ind, :])))
        tli = LinearTriInterpolator(tri, par)
        par_interp = tli(reflon, reflat)

        plt.pcolormesh(reflon,
                       reflat,
                       par_interp,
                       vmax=60.0,
                       shading='flat',
                       cmap=plt.cm.jet,
                       transform=ccrs.PlateCarree())
        cb = plt.colorbar()
        cb.ax.tick_params(labelsize=8)
        coast = cfeature.GSHHSFeature(scale='high',
                                      edgecolor='black',
                                      facecolor='none',
                                      linewidth=0.25)
        ax.add_feature(coast)
        plt.plot(besttrack.iloc[:, 3].values,
                 besttrack.iloc[:, 2].values,
                 'k--',
                 linewidth=1.0,
                 transform=ccrs.PlateCarree())

        gl = ax.gridlines(crs=ccrs.PlateCarree(),
                          draw_labels=True,
                          linewidth=2,
                          color='gray',
                          alpha=0.5,
                          linestyle='--')
        gl.xlabels_top = False
        gl.ylabels_right = False
        gl.xlines = False
        gl.ylines = False
        gl.xformatter = LONGITUDE_FORMATTER
        gl.yformatter = LATITUDE_FORMATTER
        gl.xlabel_style = {'size': 6, 'color': 'black'}
        gl.ylabel_style = {'size': 6, 'color': 'black'}
        figtitle = storm.capitalize() + ': U10 (m/s): ' + dstr
        plt.title(figtitle)

        dtlabel = datetime.date.strftime(dt, '%Y%m%d%H%M%S')
        dtlabel = dtlabel[0:8] + '_' + dtlabel[8:14]
        filenm = 'nsem_' + storm + '_wnd_' + dtlabel + '.png'
        plt.savefig(filenm, dpi=150, bbox_inches='tight', pad_inches=0.1)

        del (par)
        del (par_interp)
示例#10
0
def extract_wnd(storm,
                datafile1,
                stations,
                df,
                lonmin=None,
                lonmax=None,
                latmin=None,
                latmax=None):

    #Single file netCDF reading
    #ncf='ww3.field.2018_wnd.nc'
    ncf = datafile1
    nco = netCDF4.Dataset(ncf)
    #ncf2='ww3.field.2018_dp.nc'
    #ncf2=datafile2
    #nco2=netCDF4.Dataset(ncf2)

    #Get fields to plot
    lon = nco.variables['longitude'][:]
    lat = nco.variables['latitude'][:]
    pnt_lon = stations.iloc[0, :].values
    pnt_lat = stations.iloc[1, :].values
    timeindays = nco.variables['time'][:]
    uwnd = nco.variables['uwnd'][:]
    vwnd = nco.variables['vwnd'][:]

    #timeindays2=nco2.variables['time'][:]
    #dir=nco2.variables['dp'][:]

    if lonmin != None:
        reflon = np.linspace(lonmin, lonmax, 1000)
        reflat = np.linspace(latmin, latmax, 1000)
    else:
        reflon = np.linspace(lon.min(), lon.max(), 1000)
        reflat = np.linspace(lat.min(), lat.max(), 1000)
    reflon, reflat = np.meshgrid(reflon, reflat)

    flatness = 0.10  # flatness is from 0-.5 .5 is equilateral triangle
    tri = Triangulation(lon, lat)
    mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
    tri.set_mask(mask)

    #Read obs point locations
    #data=np.loadtxt('erie_ndbc.loc', comments = '$')
    #buoylon=data[:,0]
    #buoylat=data[:,1]

    plt.figure(figsize=[6.4, 3.8])

    df_dates = pd.DataFrame(columns=['Date'])

    # Loop through each time step and plot results
    for ind in range(0, len(timeindays)):
        plt.clf()
        ax = plt.axes(projection=ccrs.Mercator())

        dt = datetime.datetime.combine(datetime.date(
            1990, 1, 1), datetime.time(
                0, 0)) + datetime.timedelta(days=timeindays[ind])
        dstr = datetime.date.strftime(dt, '%Y%m%d%H:%M:%S')
        dstr = dstr[0:8] + ' ' + dstr[8:17]
        print('Extracting ' + dstr)

        par = np.sqrt(
            np.square(np.double(uwnd[ind, :])) +
            np.square(np.double(vwnd[ind, :])))
        #par2=np.double(dir[ind,:])

        tli = LinearTriInterpolator(tri, par)
        par_interp = tli(pnt_lon, pnt_lat)

        #print(par_interp)
        df.loc[len(df)] = par_interp
        df_dates.loc[len(df_dates)] = pd.to_datetime(
            dt, format="%Y-%m-%d %H:%M:%S")
        #line = pd.to_datetime(dt, format="%Y-%m-%d %H:%M:%S")
        #new_row = pd.DataFrame(par_interp, columns=stations.columns, index=line)
        #df = pd.concat([df, pd.DataFrame(new_row)], ignore_index=False)

        del (par)
        del (par_interp)

    df['Date'] = df_dates
    df.set_index('Date', inplace=True)
    return df
示例#11
0
def density(model, refinement=0):
    """
    Create a Voronoi mesh and calculate the local particle density on its vertices.

    The local density is calculated as follows:
    for each vertex, compute the density of each neighbour region as
    one over the area and assign the average of
    the neighbouring density to the vertex.

    Parameters
    ----------
    model : simulation.builder.Model
        the Model object containing
    refinement : int (defaults : 0)
        number of subdivision for refining the mesh (0 == None)
    Returns
    -------
    tri : matplotlib.tri.Triangulation
        the triangulation mesh (refined if set as)
    vert_density : numpy.array
        the array containing the local denstity associated with the tri mesh


    Example
    -------
    To plot the result using matplotlib use :

    .. code-block:: python

        import matplotlib.pyplot as plt
        tri, density = data_proc.density(model)
        plt.tricontour(tri, density) # to draw contours
        plt.tricontourf(tri, density) # ot draw filled contours
        plt.show()

    Note
    ----
    As of now, the numerical results may not be quantitatively accurate
    but should qualitatively represent the density.
    """
    vor = Voronoi(model.pos)
    vert_density = np.zeros(max(vor.vertices.shape))  # density vector
    reg_num = np.zeros(max(
        vor.vertices.shape))  # nbr of regions per vertex --> averaging
    for point_index, reg in enumerate(vor.point_region):
        vertices = vor.regions[reg]
        if vertices:
            if -1 not in vertices:
                area = ConvexHull(vor.vertices[vertices]).area  # gets the area
                vert_density[
                    vertices] += 1 / area  # makes it a density (sort-of)
                reg_num[vertices] += 1
    vert_density /= reg_num  # averaging

    # getting rid of really ugly border points
    new_vert, vert_density = (
        vor.vertices[vor.vertices[:, 0] >= np.min(model.pos[:, 0])],
        vert_density[vor.vertices[:, 0] >= np.min(model.pos[:, 0])])

    new_vert, vert_density = (
        new_vert[new_vert[:, 0] <= np.max(model.pos[:, 0])],
        vert_density[new_vert[:, 0] <= np.max(model.pos[:, 0])])

    new_vert, vert_density = (
        new_vert[new_vert[:, 1] >= np.min(model.pos[:, 1])],
        vert_density[new_vert[:, 1] >= np.min(model.pos[:, 1])])

    new_vert, vert_density = (
        new_vert[new_vert[:, 1] <= np.max(model.pos[:, 1])],
        vert_density[new_vert[:, 1] <= np.max(model.pos[:, 1])])

    # for triangulation refinement
    tri2 = Triangulation(*new_vert.T)
    if refinement:
        tri2.set_mask(TriAnalyzer(tri2).get_flat_tri_mask(0.1))
        refiner = UniformTriRefiner(tri2)
        print(len(tri2.neighbors), vert_density.shape)
        tri, vert_density = refiner.refine_field(vert_density,
                                                 subdiv=refinement)
    else:
        tri, vert_density = tri2, vert_density

    return tri, vert_density
示例#12
0
文件: mesh_2D.py 项目: tupui/batman
def mesh_2D(fname,
            var=None,
            flabels=None,
            fformat='csv',
            xlabel='X axis',
            ylabel='Y axis',
            vmins=None,
            output_path=None):
    """Visualization of specific variable on a user provided 2D mesh.

    The provided mesh should contain two columns (x,y coordinates for each
    mesh point) and be one of :func:`batman.input_output.available_formats`.
    (x, y) must be respectively the first and second column. Any other column
    is treated as an extra variable and will be used to plot a figure.
    If :attr:`var` is not `None`, its content will be used as plotting
    variables.

    :param str fname: name of mesh file.
    :param array_like var: data to be plotted shape (n_coords, n_vars).
    :param list(str) flabels: names of the variables.
    :param str fformat: format of the mesh file.
    :param str xlabel: name of the x-axis.
    :param str ylabel: name of the y-axis.
    :param lst(double) vmins: value of the minimal output for data filtering.
    :param str output_path: name of the output path.
    :returns: figure.
    :rtype: Matplotlib figure instances.
    """
    # Read the mesh file
    io = formater(fformat)
    mesh = io.read(fname)

    if var is not None:
        var = np.asarray(var)
    else:
        var = mesh[:, 2:]

    if flabels is None:
        flabels = ['y' + str(i) for i in range(var.shape[1])]

    # Input variables
    var_len = var.shape[0]

    if var_len != len(mesh):
        raise ValueError(
            'Variable size not equal: Variable {} - Mesh {}'.format(
                var_len, len(mesh)))

    if vmins is None:
        vmins = [None] * var_len

    # Meshing with Delaunay triangulation
    tri = Triangulation(mesh[:, 0], mesh[:, 1])

    # Masking badly shaped triangles at the border of the triangular mesh
    mask = TriAnalyzer(tri).get_flat_tri_mask(0.01)
    tri.set_mask(mask)

    # Loop over input parameters
    figs, axs = [], []
    for i, _ in enumerate(var[0]):
        fig, ax = plt.subplots()
        figs.append(fig)
        axs.append(ax)

        cmap = cm.viridis
        cmap.set_bad(alpha=0.0)
        cmap.set_under('w', alpha=0.0)
        plt.tricontourf(tri,
                        var[:, i],
                        antialiased=True,
                        cmap=cmap,
                        vmin=vmins[i])
        plt.xlabel(xlabel)
        plt.ylabel(ylabel)
        plt.tick_params(axis='x')
        plt.tick_params(axis='y')
        cbar = plt.colorbar()
        cbar.set_label(flabels[i])
        cbar.ax.tick_params()

    bat.visualization.save_show(output_path, figs, extend='neither')

    return figs, axs
示例#13
0
def extract_wlv(storm,
                datafile1,
                stations,
                df,
                lonmin=None,
                lonmax=None,
                latmin=None,
                latmax=None):

    print('Reading', datafile1)
    #Single file netCDF reading
    #ncf='ww3.field.2018_wnd.nc'
    ncf = datafile1
    nco = netCDF4.Dataset(ncf)
    #ncf2='ww3.field.2018_dp.nc'
    #ncf2=datafile2
    #nco2=netCDF4.Dataset(ncf2)

    #Get fields to plot
    lon = nco.variables['x'][:]
    lat = nco.variables['y'][:]
    pnt_lon = stations.iloc[0, :].values
    pnt_lat = stations.iloc[1, :].values
    timeinsec = nco.variables['time'][:]
    #base_date=nco.variables['time:base_date']
    #print(base_date)
    wlv = nco.variables['zeta'][:]
    triangles = nco.variables['element'][:, :]

    #timeindays2=nco2.variables['time'][:]
    #dir=nco2.variables['dp'][:]

    if lonmin != None:
        reflon = np.linspace(lonmin, lonmax, 1000)
        reflat = np.linspace(latmin, latmax, 1000)
    else:
        reflon = np.linspace(lon.min(), lon.max(), 1000)
        reflat = np.linspace(lat.min(), lat.max(), 1000)
    reflon, reflat = np.meshgrid(reflon, reflat)

    flatness = 0.10  # flatness is from 0-.5 .5 is equilateral triangle
    triangles = triangles - 1  # Correct indices for Python's zero-base
    tri = Triangulation(lon, lat, triangles=triangles)
    mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
    tri.set_mask(mask)

    #Read obs point locations
    #data=np.loadtxt('erie_ndbc.loc', comments = '$')
    #buoylon=data[:,0]
    #buoylat=data[:,1]

    df_dates = pd.DataFrame(columns=['Date'])

    # Loop through each time step and plot results
    for ind in range(0, len(timeinsec)):
        #plt.clf()
        #ax = plt.axes(projection=ccrs.Mercator())

        dt = base_info.tide_spin_start_date + datetime.timedelta(
            seconds=timeinsec[ind])
        dstr = datetime.date.strftime(dt, '%Y%m%d%H:%M:%S')
        dstr = dstr[0:8] + ' ' + dstr[8:17]
        print('Plotting ' + dstr)

        par = np.double(wlv[ind, :])

        tli = LinearTriInterpolator(tri, par)
        par_interp = tli(pnt_lon, pnt_lat)

        #print(par_interp)
        df.loc[len(df)] = par_interp
        df_dates.loc[len(df_dates)] = pd.to_datetime(
            dt, format="%Y-%m-%d %H:%M:%S")
        #line = pd.to_datetime(dt, format="%Y-%m-%d %H:%M:%S")
        #new_row = pd.DataFrame(par_interp, columns=stations.columns, index=line)
        #df = pd.concat([df, pd.DataFrame(new_row)], ignore_index=False)

        del (par)
        del (par_interp)

    df['Date'] = df_dates
    df.set_index('Date', inplace=True)
    return df
示例#14
0
def spatial_autocorr_fft(tri,
                         U,
                         V,
                         N_grid=512,
                         auto=False,
                         transform=False,
                         tree=None,
                         interp='Lanczos'):
    """
    Function to estimate autocorrelation from a single increment in cartesian
    coordinates(tau, eta)
    Input:
    -----
        tri      - Delaunay triangulation object of unstructured grid.
                   
        N_grid     - Squared, structured grid resolution to apply FFT.
        
        U, V     - Arrays with cartesian components of wind speed.
        
    Output:
    ------
        r_u,r_v  - 2D arrays with autocorrelation function rho(tau,eta) 
                   for U and V, respectively.               
    """
    if transform:
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)
        # Wind direction
        gamma = np.arctan2(V_mean, U_mean)
        # Components in matrix of coefficients
        S11 = np.cos(gamma)
        S12 = np.sin(gamma)
        T = np.array([[S11, S12], [-S12, S11]])
        vel = np.array(np.c_[U, V]).T
        vel = np.dot(T, vel)
        X = np.array(np.c_[tri.x, tri.y]).T
        X = np.dot(T, X)
        U = vel[0, :]
        V = vel[1, :]
        tri = Triangulation(X[0, :], X[1, :])
        mask = TriAnalyzer(tri).get_flat_tri_mask(.05)
        tri = Triangulation(tri.x, tri.y, triangles=tri.triangles[~mask])
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)
    else:
        # Demeaning
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)

    grid = np.meshgrid(np.linspace(np.min(tri.x), np.max(tri.x), N_grid),
                       np.linspace(np.min(tri.y), np.max(tri.y), N_grid))

    U = U - U_mean
    V = V - V_mean

    # Interpolated values of wind field to a squared structured grid

    if interp == 'cubic':
        U_int = CubicTriInterpolator(tri, U)(grid[0].flatten(),
                                             grid[1].flatten()).data
        V_int = CubicTriInterpolator(tri, V)(grid[0].flatten(),
                                             grid[1].flatten()).data
        U_int = np.reshape(U_int, grid[0].shape)
        V_int = np.reshape(V_int, grid[0].shape)
    else:
        #        U_int= lanczos_int_sq(grid,tree,U)
        #        V_int= lanczos_int_sq(grid,tree,V)
        U_int = LinearTriInterpolator(tri, U)(grid[0].flatten(),
                                              grid[1].flatten()).data
        V_int = LinearTriInterpolator(tri, V)(grid[0].flatten(),
                                              grid[1].flatten()).data
        U_int = np.reshape(U_int, grid[0].shape)
        V_int = np.reshape(V_int, grid[0].shape)

    #zero padding
    U_int[np.isnan(U_int)] = 0.0
    V_int[np.isnan(V_int)] = 0.0
    fftU = np.fft.fft2(U_int)
    fftV = np.fft.fft2(V_int)
    if auto:

        # Autocorrelation
        r_u = np.real(np.fft.fftshift(np.fft.ifft2(np.absolute(fftU)**
                                                   2))) / len(U_int.flatten())
        r_v = np.real(np.fft.fftshift(np.fft.ifft2(np.absolute(fftV)**
                                                   2))) / len(U_int.flatten())
        r_uv = np.real(
            np.fft.fftshift(np.fft.ifft2(np.real(
                fftU * np.conj(fftV))))) / len(U_int.flatten())

    dx = np.max(np.diff(grid[0].flatten()))
    dy = np.max(np.diff(grid[1].flatten()))

    n = grid[0].shape[0]
    m = grid[1].shape[0]
    # Spectra
    fftU = np.fft.fftshift(fftU)
    fftV = np.fft.fftshift(fftV)
    fftUV = fftU * np.conj(fftV)
    Suu = 2 * (np.abs(fftU)**2) * (dx * dy) / (n * m)
    Svv = 2 * (np.abs(fftV)**2) * (dx * dy) / (n * m)
    Suv = 2 * np.real(fftUV) * (dx * dy) / (n * m)
    k1 = np.fft.fftshift((np.fft.fftfreq(n, d=dx)))
    k2 = np.fft.fftshift((np.fft.fftfreq(m, d=dy)))
    if auto:
        return (r_u, r_v, r_uv, Suu, Svv, Suv, k1, k2)
    else:
        return (Suu, Svv, Suv, k1, k2)
示例#15
0
def plot_wlv(storm, datafile1, datafile2=None, lonmin=None, lonmax=None, latmin=None, latmax=None, domain=None):

   #Single file netCDF reading
   ncf=datafile1
   nco=netCDF4.Dataset(ncf)
   ncf2=datafile2
   nco2=netCDF4.Dataset(ncf2)

   #Get fields to plot
   lon=nco.variables['longitude'][:]
   lat=nco.variables['latitude'][:]
   timeindays=nco.variables['time'][:]
   wlv=nco.variables['wlv'][:]
   triangles=nco.variables['tri'][:,:]

   dpt=nco2.variables['dpt'][:]

   if lonmin != None:
      reflon=np.linspace(lonmin, lonmax, 1000)
      reflat=np.linspace(latmin, latmax, 1000)
   else:
      reflon=np.linspace(lon.min(),lon.max(),1000)
      reflat=np.linspace(lat.min(),lat.max(),1000)
   reflon,reflat=np.meshgrid(reflon,reflat)

   plt.figure(figsize = [6.4, 3.8])

   flatness=0.10  # flatness is from 0-.5 .5 is equilateral triangle
   triangles=triangles-1  # Correct indices for Python's zero-base
   tri=Triangulation(lon,lat,triangles=triangles)
   mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
   tri.set_mask(mask)

   # Loop through each time step and plot results
   for ind in range(0, len(timeindays)):
      besttrack = pd.read_csv(PARMnsem+'/storms/'+STORM+'/best_track.txt', header=None, skiprows=4, delim_whitespace=True) 
      plt.clf()
      ax = plt.axes(projection=ccrs.Mercator())
      if lonmin != None:
         ax.set_extent([lonmin, lonmax, latmin, latmax], crs=ccrs.PlateCarree())
 
      dt = datetime.datetime.combine(datetime.date(1990, 1, 1), datetime.time(0, 0)) + datetime.timedelta(days=timeindays[ind])
      dstr = datetime.date.strftime(dt,'%Y%m%d%H:%M:%S')
      dstr = dstr[0:8]+' '+dstr[8:17]
      print('Plotting '+dstr)

      par=np.double(wlv[ind,:])
      tli=LinearTriInterpolator(tri,par)
      par_interp=tli(reflon,reflat)

      plt.pcolormesh(reflon,reflat,par_interp,vmin=-2.0,vmax=2.0, shading='flat',cmap=plt.cm.bwr, transform=ccrs.PlateCarree())
      cb = plt.colorbar()
      cb.ax.tick_params(labelsize=8)
      coast = cfeature.GSHHSFeature(scale='high',edgecolor='black',facecolor='none',linewidth=0.25)	
      ax.add_feature(coast)
      plt.plot(besttrack.iloc[:,3].values, besttrack.iloc[:,2].values, 'k--', linewidth=1.0, transform=ccrs.PlateCarree())

      gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
                  linewidth=2, color='gray', alpha=0.5, linestyle='--')
      gl.xlabels_top = False
      gl.ylabels_right = False
      gl.xlines = False
      gl.ylines = False
      gl.xformatter = LONGITUDE_FORMATTER
      gl.yformatter = LATITUDE_FORMATTER
      gl.xlabel_style = {'size': 6, 'color': 'black'}
      gl.ylabel_style = {'size': 6, 'color': 'black'}
      figtitle = storm.capitalize()+': WL (m MSL): '+dstr
      plt.title(figtitle)

      dtlabel = datetime.date.strftime(dt,'%Y%m%d%H%M%S')
      dtlabel = dtlabel[0:8]+'_'+dtlabel[8:14]
      filenm = 'nsem_'+storm+'_wlv_'+dtlabel+'_'+domain+'.png'
      plt.savefig(filenm,dpi=150,bbox_inches='tight',pad_inches=0.1)

      del(par)
      del(par_interp)
示例#16
0
    CS = ax.tricontour(tri,
                       z,
                       breaks,
                       linewidths=[0.5, 0.25],
                       colors='saddlebrown')
    plt.clabel(CS, inline=5, fontsize=8)
    ax.set_ylabel('X[m]')
    ax.set_xlabel('Y[m]')
    plt.grid()
    plt.savefig('plot.png', dpi=300)
    plt.show()

    # Tworzenie mapy hipsometrycznej
    matplotlib.rcParams['contour.negative_linestyle'] = 'solid'
    tri = Triangulation(y, x)
    mask = TriAnalyzer(tri).get_flat_tri_mask(0.02)
    tri.set_mask(mask)
    fig, ax = plt.subplots()
    fig.set_size_inches(10, 15)
    ax.tick_params(labelsize=15)
    ax.yaxis.set_major_formatter(FormatStrFormatter('%d'))
    ax.xaxis.set_major_formatter(FormatStrFormatter('%d'))
    ax.set_aspect('equal')
    ax.set_title("Mapa warstwicowa")
    CS = ax.tricontourf(tri, z, cmap='RdBu')
    ax.tricontour(tri, z, breaks, linewidths=[0.5, 0.25], colors='saddlebrown')
    plt.clabel(CS, inline=1, fontsize=10)
    ax.set_ylabel('X[m]')
    ax.set_xlabel('Y[m]')
    plt.grid()
    plt.savefig('plotHipso.png', dpi=300)
示例#17
0
def plot_cur(storm, datafile1, datafile2=None):

   #Single file netCDF reading
   ncf=datafile1
   nco=netCDF4.Dataset(ncf)
   #ncf2=datafile2
   #nco2=netCDF4.Dataset(ncf2)

   #Get fields to plot
   lon=nco.variables['longitude'][:]
   lat=nco.variables['latitude'][:]
   timeindays=nco.variables['time'][:]
   ucur=nco.variables['ucur'][:]
   vcur=nco.variables['vcur'][:]
   triangles=nco.variables['tri'][:,:]

   #timeindays2=nco2.variables['time'][:]
   #dir=nco2.variables['dp'][:]

   reflon=np.linspace(lon.min(),lon.max(),1000)
   reflat=np.linspace(lat.min(),lat.max(),1000)
   #reflon=np.linspace(-80.40, -74.75, 1000)
   #reflat=np.linspace(32.50, 36.60, 1000)
   #reflon=np.linspace(-75.70, -71.05, 1000)
   #reflat=np.linspace(38.50, 41.40, 1000)
   reflon,reflat=np.meshgrid(reflon,reflat)

   plt.figure(figsize = [6.4, 3.8])

   flatness=0.10  # flatness is from 0-.5 .5 is equilateral triangle
   triangles=triangles-1  # Correct indices for Python's zero-base
   tri=Triangulation(lon,lat,triangles=triangles)
   mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
   tri.set_mask(mask)

   # Loop through each time step and plot results
   for ind in range(0, len(timeindays)): 
      plt.clf()
      ax = plt.axes(projection=ccrs.Mercator())

      dt = datetime.datetime.combine(datetime.date(1990, 1, 1), datetime.time(0, 0)) + datetime.timedelta(days=timeindays[ind])
      dstr = datetime.date.strftime(dt,'%Y%m%d%H:%M:%S')
      dstr = dstr[0:8]+' '+dstr[8:17]
      print('Plotting '+dstr)

      par=np.sqrt( np.square(np.double(ucur[ind,:])) + np.square(np.double(vcur[ind,:])) )
      #par2=np.double(dir[ind,:])

      tli=LinearTriInterpolator(tri,par)
      par_interp=tli(reflon,reflat)

      #u=np.cos(np.pi/180*(270-par_interp))
      #v=np.sin(np.pi/180*(270-par_interp))

      plt.pcolormesh(reflon,reflat,par_interp,vmin=0.0,vmax=2.0,shading='flat',cmap=plt.cm.jet, transform=ccrs.PlateCarree())
      #plt.contourf(reflon, reflat, par_interp, vmax=60.0, cmap=plt.cm.jet, transform=ccrs.PlateCarree())
      cb = plt.colorbar()
      cb.ax.tick_params(labelsize=8)
      #rowskip=np.floor(par_interp.shape[0]/25)
      #colskip=np.floor(par_interp.shape[1]/25)
      rowskip = 50
      colskip = 50
      #plt.quiver(reflon[0::rowskip,0::colskip],reflat[0::rowskip,0::colskip],\
      #      u[0::rowskip,0::colskip],v[0::rowskip,0::colskip], \
      #      scale = 50, color='black',pivot='middle',units='xy',alpha=0.7)
      coast = cfeature.GSHHSFeature(scale='high',edgecolor='black',facecolor='none',linewidth=0.25)	
      ax.add_feature(coast)
      plt.xticks(fontsize=9)
      plt.yticks(fontsize=9)

      figtitle = storm.capitalize()+': Cur (m/s): '+dstr
      plt.title(figtitle)

      dtlabel = datetime.date.strftime(dt,'%Y%m%d%H%M%S')
      dtlabel = dtlabel[0:8]+'_'+dtlabel[8:14]
      filenm = 'nsem_'+storm+'_cur_'+dtlabel+'.png'
      plt.savefig(filenm,dpi=150,bbox_inches='tight',pad_inches=0.1)

      del(par)
      del(par_interp)
示例#18
0
# meshing with Delaunay triangulation
tri = Triangulation(x_test, y_test)
ntri = tri.triangles.shape[0]

# Some invalid data are masked out
mask_init = np.zeros(ntri, dtype=bool)
masked_tri = random_gen.randint(0, ntri, int(ntri * init_mask_frac))
mask_init[masked_tri] = True
tri.set_mask(mask_init)


#-----------------------------------------------------------------------------
# Improving the triangulation before high-res plots: removing flat triangles
#-----------------------------------------------------------------------------
# masking badly shaped triangles at the border of the triangular mesh.
mask = TriAnalyzer(tri).get_flat_tri_mask(min_circle_ratio)
tri.set_mask(mask)

# refining the data
refiner = UniformTriRefiner(tri)
tri_refi, z_test_refi = refiner.refine_field(z_test, subdiv=subdiv)

# analytical 'results' for comparison
z_expected = experiment_res(tri_refi.x, tri_refi.y)

# for the demo: loading the 'flat' triangles for plot
flat_tri = Triangulation(x_test, y_test)
flat_tri.set_mask(~mask)


#-----------------------------------------------------------------------------
示例#19
0
def plot_cur(storm, datafile1, datafile2=None):

    #Single file netCDF reading
    ncf = datafile1
    nco = netCDF4.Dataset(ncf)
    #ncf2=datafile2
    #nco2=netCDF4.Dataset(ncf2)

    #Get fields to plot
    lon = nco.variables['longitude'][:]
    lat = nco.variables['latitude'][:]
    timeindays = nco.variables['time'][:]
    ucur = nco.variables['ucur'][:]
    vcur = nco.variables['vcur'][:]
    triangles = nco.variables['tri'][:, :]

    #timeindays2=nco2.variables['time'][:]
    #dir=nco2.variables['dp'][:]

    reflon = np.linspace(lon.min(), lon.max(), 1000)
    reflat = np.linspace(lat.min(), lat.max(), 1000)
    #reflon=np.linspace(-80.40, -73.35, 1000)
    #reflat=np.linspace(32.50, 39.50, 1000)
    reflon, reflat = np.meshgrid(reflon, reflat)

    plt.figure(figsize=[6.4, 3.8])

    flatness = 0.10  # flatness is from 0-.5 .5 is equilateral triangle
    triangles = triangles - 1  # Correct indices for Python's zero-base
    tri = Triangulation(lon, lat, triangles=triangles)
    mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
    tri.set_mask(mask)

    # Loop through each time step and plot results
    for ind in range(0, len(timeindays)):
        besttrack = pd.read_csv(PARMnsem + '/storms/' + STORM +
                                '/best_track.txt',
                                header=None,
                                skiprows=4,
                                delim_whitespace=True)
        plt.clf()
        ax = plt.axes(projection=ccrs.Mercator())
        ax.set_extent([-100.00, -50.00, 4.00, 48.00], crs=ccrs.PlateCarree())
        #ax.set_extent([-80.40, -73.35, 32.50, 39.50], crs=ccrs.PlateCarree())

        dt = base_info.tide_spin_start_date + datetime.timedelta(
            days=timeindays[ind])
        dstr = datetime.date.strftime(dt, '%Y%m%d%H:%M:%S')
        dstr = dstr[0:8] + ' ' + dstr[8:17]
        print('Plotting ' + dstr)

        par = np.sqrt(
            np.square(np.double(ucur[ind, :])) +
            np.square(np.double(vcur[ind, :])))
        #par2=np.double(dir[ind,:])

        tli = LinearTriInterpolator(tri, par)
        par_interp = tli(reflon, reflat)

        #u=np.cos(np.pi/180*(270-par_interp))
        #v=np.sin(np.pi/180*(270-par_interp))

        plt.pcolormesh(reflon,
                       reflat,
                       par_interp,
                       vmin=0.0,
                       vmax=2.0,
                       shading='flat',
                       cmap=plt.cm.jet,
                       transform=ccrs.PlateCarree())
        #plt.contourf(reflon, reflat, par_interp, vmax=60.0, cmap=plt.cm.jet, transform=ccrs.PlateCarree())
        cb = plt.colorbar()
        cb.ax.tick_params(labelsize=8)
        #rowskip=np.floor(par_interp.shape[0]/25)
        #colskip=np.floor(par_interp.shape[1]/25)
        rowskip = 50
        colskip = 50
        #plt.quiver(reflon[0::rowskip,0::colskip],reflat[0::rowskip,0::colskip],\
        #      u[0::rowskip,0::colskip],v[0::rowskip,0::colskip], \
        #      scale = 50, color='black',pivot='middle',units='xy',alpha=0.7)
        coast = cfeature.GSHHSFeature(scale='high',
                                      edgecolor='black',
                                      facecolor='none',
                                      linewidth=0.25)
        ax.add_feature(coast)
        plt.plot(besttrack.iloc[:, 3].values,
                 besttrack.iloc[:, 2].values,
                 'k--',
                 linewidth=1.0,
                 transform=ccrs.PlateCarree())

        gl = ax.gridlines(crs=ccrs.PlateCarree(),
                          draw_labels=True,
                          linewidth=2,
                          color='gray',
                          alpha=0.5,
                          linestyle='--')
        gl.xlabels_top = False
        gl.ylabels_right = False
        gl.xlines = False
        gl.ylines = False
        gl.xformatter = LONGITUDE_FORMATTER
        gl.yformatter = LATITUDE_FORMATTER
        gl.xlabel_style = {'size': 6, 'color': 'black'}
        gl.ylabel_style = {'size': 6, 'color': 'black'}
        figtitle = storm.capitalize() + ': Cur (m/s): ' + dstr
        plt.title(figtitle)

        dtlabel = datetime.date.strftime(dt, '%Y%m%d%H%M%S')
        dtlabel = dtlabel[0:8] + '_' + dtlabel[8:14]
        filenm = 'nsem_' + storm + '_cur_' + dtlabel + '.png'
        plt.savefig(filenm, dpi=150, bbox_inches='tight', pad_inches=0.1)

        del (par)
        del (par_interp)