def stat_function_tst(conn, prefix='', OUTPUT_PATH=None, threshold=0.05): fc = conn.hurst tst = Parallel(n_jobs=3, verbose=5)(delayed(ttest_group)(group, threshold, fc) for group in groups) if OUTPUT_PATH is None: font = {'family': 'normal', 'size': 20} changefont('font', **font) gr = ['v', 'av', 'avn'] for i in range(3): title = prefix + '_'.join(groups[i]) try: img = conn.masker.inverse_transform(tst[i]) print title plot_stat_map(img, cut_coords=(3, -63, 36)) plt.show() except ValueError: print "problem with tst " + title changefont.func_defaults else: for i in range(3): title = prefix + '_'.join(groups[i]) output_file = os.path.join(OUTPUT_PATH, title) try: img = conn.masker.inverse_transform(tst[i]) plot_stat_map(img, cut_coords=(3, -63, 36), output_file=output_file + '.pdf') except ValueError: print "problem with tst " + title
def stat_function_tst(conn, prefix='', OUTPUT_PATH=None, threshold=0.05): fc = conn.hurst tst = Parallel(n_jobs=3, verbose=5)(delayed(ttest_group)(group, threshold, fc) for group in groups) if OUTPUT_PATH is None: font = {'family' : 'normal', 'size' : 20} changefont('font', **font) gr = ['v', 'av', 'avn'] for i in range(3): title = prefix + '_'.join(groups[i]) try: img = conn.masker.inverse_transform(tst[i]) print title plot_stat_map(img, cut_coords=(3, -63, 36)) plt.show() except ValueError: print "problem with tst " + title changefont.func_defaults else: for i in range(3): title = prefix + '_'.join(groups[i]) output_file = os.path.join(OUTPUT_PATH, title) try: img = conn.masker.inverse_transform(tst[i]) plot_stat_map(img, cut_coords=(3, -63, 36), output_file=output_file + '.pdf') except ValueError: print "problem with tst " + title
def plot_syj_against_j(j1=2, j2=6, wtype=1, theoretical_Hurst=0.8, idx_simulation=0, OUTPUT_FILE=None): idx = int(theoretical_Hurst * 10) - 1 if(idx < 0 or idx > 10): idx = 7 simulation = np.cumsum(opas.get_simulation(), axis=-1) dico = wtspecq_statlog3(simulation[idx,idx_simulation], 2, 1, np.array(2), int(np.log2(simulation[idx,idx_simulation].shape[0])), 0, 0) Elog = dico['Elogmuqj'][0] Varlog = dico['Varlogmuqj'][0] nj = dico['nj'] regression = regrespond_det2(Elog, Varlog, nj, j1, j2, wtype) font = {'family' : 'normal', 'weight' : 'bold', 'size' : 22} changefont('font', **font) jmax = len(Elog) j_indices = np.arange(0,jmax + 2) fig = plt.plot(j_indices, j_indices * regression['Zeta'] + regression['aest']) plt.text(j_indices.mean() - 2 * j_indices.var() / jmax, Elog.mean() + Elog.var() / jmax, r'Hurst Exponent = %.2f'%(regression['Zeta']/2)) j_indices = np.arange(0,jmax) + 1 plt.plot(j_indices, Elog, 'ro') plt.xlabel('scale j') plt.ylabel('log Sy(j,2)') if not OUTPUT_FILE is None: plt.savefig(OUTPUT_FILE) plt.show()
def stat_function(conn, prefix='', OUTPUT_PATH=None): fc = conn.hurst a = Parallel(n_jobs=3, verbose=5)(delayed(classify_group)(group, fc) for group in groups) #tst = Parallel(n_jobs=3, verbose=5)(delayed(ttest_group)(group, .05, fc) #for group in groups) #save_stat({'a':a, 'tst': tst}, save_file=prefix) ##ost = Parallel(n_jobs=3, verbose=5)(delayed(ttest_onesample)(group, 0.05, fc) ##for group in ['v', 'av', 'avn']) ##mht = Parallel(n_jobs=3, verbose=5)(delayed(ttest_onesample_Hmean)(group, 0.05, fc) ##for group in ['v', 'av', 'avn']) ##mpt = Parallel(n_jobs=3, verbose=5)(delayed(mne_permutation_ttest)(group,0.05, fc, 1) ##for group in ['v', 'av', 'avn']) ##cot = Parallel(n_jobs=3, verbose=5)(delayed(ttest_onesample_coef)(np.reshape(coef['coef'], (coef['coef'].shape[0], coef['coef'].shape[-1])), ##0.05, fc) ##for coef in a) #gr = ['v', 'av', 'avn'] if OUTPUT_PATH is None: for i in range(3): title = prefix + '_'.join(groups[i]) #try: #img = conn.masker.inverse_transform(tst[i]) #plot_stat_map(img, cut_coords=(3, -63, 36), title=title) #except ValueError: #print "problem with tst " + title ##try: ##img = conn.masker.inverse_transform(cot[i]) ##plot_stat_map(img, title='coef_map ' + title) ##except ValueError: ##print "problem with cot " + title ##title = prefix + gr[i] ##try: ##img = conn.masker.inverse_transform(ost[i]) ##plot_stat_map(img, title='t-test H0 : H = 0.5 pvalue in -log10 scale groupe : ' + title) ##except ValueError: ##print "problem with ost " + title ##try: ##img = conn.masker.inverse_transform(mht[i]) ##plot_stat_map(img, title='t-test H0 : H = 0.5 pvalue in -log10 scale groupe : ' + title) ##except ValueError: ##print "problem with mht " + title ##try: ##img = conn.masker.inverse_transform(mpt[i]) ##plot_stat_map(img, title='t-test H0 : H = 0.5 pvalue in -log10 scale groupe : ' + title) ##except ValueError: ##print "problem with mpt " + title else: #for i in range(3): #title = prefix + '_'.join(groups[i]) #output_file = os.path.join(OUTPUT_PATH, title) #try: #img = conn.masker.inverse_transform(tst[i]) #plot_stat_map(img, cut_coords=(3, -63, 36), title=title, output_file=output_file + '.pdf') #except ValueError: #print "problem with tst " + title ##try: ##img = conn.masker.inverse_transform(cot[i]) ##plot_stat_map(img, title='coef_map ' + title, output_file=output_file + 'coef_map.pdf') ##except ValueError: ##print "problem with cot " + title ##title = prefix + gr[i] ##output_file = os.path.join(OUTPUT_PATH, title) ##try: ##img = conn.masker.inverse_transform(ost[i]) ##plot_stat_map(img, title='t-test H0 : H = 0.5 pvalue in -log10 scale groupe : ' + title, output_file= output_file + '.pdf') ##except ValueError: ##print "problem with ost " + title ##try: ##img = conn.masker.inverse_transform(mht[i]) ##plot_stat_map(img, title='t-test H0 : H = 0.5 pvalue in -log10 scale groupe : ' + title, output_file= output_file + 'meanH.pdf') ##except ValueError: ##print "problem with mht " + title ##try: ##img = conn.masker.inverse_transform(mpt[i]) ##plot_stat_map(img, title='t-test H0 : H = 0.5 pvalue in -log10 scale groupe : ' + title, output_file= output_file + 'mnepermutH.pdf') ##except ValueError: ##print "problem with mpt " + title font = {'family' : 'normal', 'size' : 12} changefont('font', **font) plt.figure() box = plt.boxplot(map(lambda x: x['accuracy'], a)) #for i,line in enumerate(box['medians']):# get position data for median line #x, y = line.get_xydata()[1] # top of median line ## overlay median value #plt.text(x + 0.1, y - 0.02, '%.2f\n%.2e' % (np.mean(a[i]['accuracy']), #np.var(a[i]['accuracy'])), #horizontalalignment='center') # draw above, centered plt.ylim(0.1,1) plt.xticks([1,2,3], ['AV-V\n $\mu =$ %.2f\n $\sigma^2 = $%.2e' %(np.mean(a[0]['accuracy'],np.var(a[0]['accuracy']))) , 'AV-AVn\n$\mu =$ %.2f\n $\sigma^2 = $%.2e' %(np.mean(a[1]['accuracy'],np.var(a[1]['accuracy']))) , 'V-AVn\n$\mu =$ %.2f\n $\sigma^2 = $%.2e' %(np.mean(a[2]['accuracy'],np.var(a[2]['accuracy'])))]) plt.savefig(os.path.join(OUTPUT_PATH, prefix+'boxplot.pdf')) changefont.func_defaults