示例#1
0
def set_xspec(obsid, model = None,
              rmffile='/Users/corcoran/Dropbox/nicer_cal/nicer_v0.06.rmf',
              arffile='/Users/corcoran/Dropbox/nicer_cal/ni_xrcall_onaxis_v0.06.arf',
              workdir='/Users/corcoran/research/WR140/NICER/work/',
              ignore='0.0-0.45, 5.-**', showplot=False, showmodel=False
              ):
    """
    sets the pha and model instances for a given obsid
    :param obsid: NICER observation id (integer)
    :param rmffile: NICER response file
    :param arffile: NICER effective area file
    :param workdir: NICER dataset working directory
    :param ignore: energy range in keV to ignore when fitting
    :param showplot: if True plot the model and spectrum vs. energy
    :param showmodel: if True print the model parameters
    :return:
    """
    import xspec
    import matplotlib as plt
    obs = str(obsid)

    xspec.AllData.clear()
    xspec.AllModels.clear()

    xspecdir = os.path.join(workdir, obs)
    phaname = os.path.join(xspecdir, 'ni{obs}_0mpu7_cl.pha'.format(obs=obsid))
    print "phaname = {phaname}".format(phaname=phaname)

    try:
        pha = xspec.Spectrum(phaname)
    except:
        print "Can't find {phaname}; returning".format(phaname=phaname)
        return 0, 0
    pha.response = rmffile
    pha.response.arf = arffile
    pha.ignore(ignore)

    #
    # Define a model
    #
    if not model:
        model = set_model()
    if showmodel:
        with sys_pipes():
            model.show()
    if showplot:
        xspec.Plot.setRebin(minSig=3, maxBins=30)
        xspec.Plot.device = "/null"
        xspec.Plot.xAxis = "keV"
        xspec.Plot.yLog = "True"
        xspec.Plot("data")

        plt.figure(figsize=[10, 6])
        plt.yscale('log')
        plt.xscale('log')
        plt.xlabel('Energy (keV)', fontsize=16)
        plt.step(xspec.Plot.x(), xspec.Plot.y())
        plt.step(xspec.Plot.x(), xspec.Plot.model())

    return pha, model
示例#2
0
def plot_gti_lc(obsid, rootdir, flagtype="slow", binwidth=2, ymax=30, save=False,
                chanmin=None, chanmax=None,
                figdir='/Users/corcoran/research/WR140/NICER/plots',
                figsize=[15, 4]):
    """
    plots the lightcurve for the specified obsid for all the gtis
    """

    nobs = nicerObs(obsid, rootdir)
    gti = nobs.get_gti()
    fig = plt.figure(figsize=figsize)

    nrows = int(len(gti) / 2)
    for i in range(2 * nrows):
        tstart = gti['START'][i]
        tstop = gti['STOP'][i]
        # print tstart,tstop
        subplot(nrows, 2, i + 1)
        fig.tight_layout(pad=1.2)
        ylim(0, ymax)
        plt.xlabel('Time - {0} (seconds)'.format(tstart), fontsize=16)
        plt.ylabel('XTI Counts s$^{-1}$', fontsize=16)
        if chanmin:
            titl = "{0} {1}-{2}".format(obsid, chanmin, chanmax)
        else:
            titl = obsid
        plt.title(titl)
        ctsbin, bincen, binwidths = nobs.get_lc(gtinum=i, binwidth=binwidth, flagtype=flagtype, chanmin=chanmin,
                                                chanmax=chanmax)
        plt.step(bincen - gti['START'][i], ctsbin / binwidth)
        if save:
            figname = os.path.join(figdir, "{0}_plot_gti.pdf".format(obsid))
            plt.savefig(figname)
示例#3
0
def save_controls(control_name, fname, action):
    steps = [
        i * environment_configs.get_interval_width()
        for i in range(action.shape[0])
    ]
    plt.clf()
    plt.step(steps, action)
    plt.ylabel(control_name)
    plt.xlabel('t')
    plt.savefig(fname + '_' + control_name)
def plot_ecdf(data, name):
    # sort the values
    sorted_data = np.sort(data)

    # eval y
    n = sorted_data.size
    F_x = [sorted_data[sorted_data <= x].size / n for x in sorted_data]

    # plot the plot
    plt.step(sorted_data, F_x, linewidth=4, label=name)

    return
示例#5
0
def fit_spectrum(obsid, pha, model, writexcm=True,
                 workdir='/Users/corcoran/research/WR140/NICER/work/',
                 statMethod='cstat'
                 ):
    import xspec
    from wurlitzer import sys_pipes
    import pylab as plt
    from heasarc.utils import xspec_utils as xu
    if type(pha) != int:
        #
        # do fit
        #
        xspec.Fit.statMethod = statMethod
        xspec.Fit.perform()
        print("Best Fit Model is\n")
        with sys_pipes():
            model.show()
        pha.notice("0.4-10.0")
        xspec.Plot.setRebin(minSig=3, maxBins=30)
        xspec.Plot.device = "/null"
        xspec.Plot.xAxis = "keV"
        xspec.Plot.yLog = "True"
        xspec.Plot("data")
        plt.figure(figsize=[10, 6])
        plt.yscale('log')
        plt.xscale('log')
        plt.xlabel('Energy (keV)', fontsize=16)
        plt.title("{obs}".format(obs=obsid), fontsize=16)
        plt.errorbar(xspec.Plot.x(), xspec.Plot.y(),
                 xerr=xspec.Plot.xErr(), yerr=xspec.Plot.yErr(), fmt='.')
        plt.step(xspec.Plot.x(), xspec.Plot.model(), where="mid")
        band = "0.5-10 keV"
        xspec.AllModels.calcFlux(band.replace(' keV', '').replace('-',' '))
        print "Flux is {0:.3e} in the  {1} band".format(pha.flux[0], band)
        if writexcm:
            xcmfile = os.path.join(workdir, str(obsid), 'ni{obsid}_0mpu7_cl'.format(obsid=obsid))
            xu.write_xcm(xcmfile, pha, model=model)
    else:
        print "Can't fit OBSID {obs}".format(obs=obsid)
    return pha, model
示例#6
0
    def scree_plot(self):
        total = sum(self.eig_vals)
        explained_var = [(i / total) * 100
                         for i in sorted(self.eig_vals, reverse=True)]
        cum_var = np.cumsum(explained_var)

        with plt.style.context('seaborn-darkgrid'):

            plt.bar(range(len(explained_var)),
                    explained_var,
                    align='center',
                    label='individual explained variance')
            plt.step(range(len(explained_var)),
                     cum_var,
                     where='mid',
                     label='cumulative explained variance',
                     color="red")
            plt.ylabel("Cumulative variance")
            plt.xlabel("Principal components")
            plt.tight_layout()
            plt.legend(loc='best')
            plt.show()
示例#7
0
    classifyReports[j] = report
    preRecFSupports[j] = prfs
microAverageList = [v["micro"] for v in APList.values()]
microAverage = np.mean(microAverageList)
print('Average precision score, micro-averaged over all classes: {0:0.2f}'.
      format(microAverage))

# %%
print(classifyReports[2])

# %%
print(preRecFSupports[4])

# %%
plt.figure()
plt.step(recall['micro'], precision['micro'], where='post')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(
    'Average precision score, micro-averaged over all classes: AP={0:0.2f}'.
    format(average_precision["micro"]))

# %%
svc.decision_function

# %%
from itertools import cycle
# setup plot details
n_classes = 3
示例#8
0
# ----------------  plot PRC ----------------


average_precision = average_precision_score(test_label_trans, lp_probs_trans)

precision, recall, thresholds = precision_recall_curve(test_label_trans, lp_probs_trans)

pos_rate = sum(test_label_trans)/len(test_label_trans)

f=plt.figure()
matplotlib.rcParams.update({'font.size': 20})
# In matplotlib < 1.5, plt.fill_between does not have a 'step' argument
step_kwargs = ({'step': 'post'}
               if 'step' in signature(plt.fill_between).parameters
               else {})
plt.step(recall, precision, color='b', alpha=0.2,
         where='post', label='AP = %0.2f' % average_precision)
plt.fill_between(recall, precision, alpha=0.2, color='b', **step_kwargs)
plt.plot([0, 1], [pos_rate, pos_rate], 'r--')
plt.legend(loc='upper right')

plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
# plt.title('PRC for skip-chain CRF with threads \n AP={0:0.2f}'.format(average_precision))
f.savefig("data_cmv/figures/exp-skip-thread-prc-large-6.pdf", bbox_inches='tight')

print(precision)
print(recall)