("orange", (6.0, 1.0, 1.5, 1.0)), ("black", (None, None)), ] # ---------------------------------------------------------------------- def getval(v): try: d = float(v) except ValueError: d = None return d # ---------------------------------------------------------------------- figure = matplotlibext.Figure() figure.open(4.5, 4.5, margins=[[0.55, 0.2, 0.1], [0.35, 0.6, 0.1]], dpi=150) locs = [(-6.0, -9.0), (+6.0, 0.0)] nrows = 2 ncols = 2 cell = "tet4" dx = 75 simdirs = [] modelers = [ ('Barall', "barall"), ('Kaneko', "kaneko"), ('PyLith', "tet4"), ]
return def getProfile(self, cycle, t): dt = self.time[1] - self.time[0] tProf = tcycle.value*cycles[icycle]+t*year.value iProf = numpy.where(numpy.fabs(self.time-tProf) < 0.5*dt)[0][0] t0 = tcycle.value*cycles[icycle] i0 = numpy.where(numpy.fabs(self.time-t0) < 0.5*dt)[0][0] disp = self.disp[iProf,:] - self.disp[i0,:] return (self.dist, disp.squeeze()) # ---------------------------------------------------------------------- figure = matplotlibext.Figure(color=style,fontsize=fontsize) figure.open(3.0, 5.0, margins=[[0.45, 0.3, 0.2], [0.4, 0.3, 0.12]], dpi=150) analytic = AnalyticSoln("output/analytic_disp.txt") import collections sims = collections.defaultdict(dict) for r in res: for c in cells: sims[c][r] = PyLithOutput(c, r) cycles = [1,9] snaptime = numpy.array([0.05, 0.25, 0.50, 0.75, 0.95])*tcycle.value/year.value nrows = 2