示例#1
0
def test_distributions_reproducible():
    dp = mc_fixture(seed=123)
    mm = mu.MappedMatrix(packages=[dp], matrix="foo", use_distributions=True)

    results = np.zeros((2, 2, 10))
    results[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        results[:, :, i] = mm.matrix.toarray()

    given = results.sum(axis=0).sum(axis=0).ravel()
    print(given.shape)
    print(given)
    expected = np.array([
        21.06909828,
        29.21713645,
        37.0735732,
        32.0954309,
        22.10498503,
        30.75377088,
        24.87344966,
        31.2384641,
        27.44208816,
        27.45639759,
    ])
    assert np.allclose(expected, given)
示例#2
0
def test_distributions_not_allowed():
    dp = mc_fixture()
    mm = mu.MappedMatrix(packages=[dp], matrix="foo", use_distributions=False)

    results = np.zeros((2, 2, 10))
    results[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        results[:, :, i] = mm.matrix.toarray()

    assert np.unique(results).shape == (4, )
示例#3
0
def test_distributions_seed_override():
    dp = mc_fixture(seed=123)
    mm = mu.MappedMatrix(packages=[dp], matrix="foo", use_distributions=True)

    results = np.zeros((2, 2, 10))
    results[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        results[:, :, i] = mm.matrix.toarray()

    dp = mc_fixture(seed=123)
    mm = mu.MappedMatrix(packages=[dp],
                         matrix="foo",
                         use_distributions=True,
                         seed_override=7)

    first = np.zeros((2, 2, 10))
    first[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        first[:, :, i] = mm.matrix.toarray()

    dp = mc_fixture(seed=567)
    mm = mu.MappedMatrix(packages=[dp],
                         matrix="foo",
                         use_distributions=True,
                         seed_override=7)

    second = np.zeros((2, 2, 10))
    second[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        second[:, :, i] = mm.matrix.toarray()

    assert not np.allclose(results, first)
    assert np.allclose(first, second)
示例#4
0
def test_distributions_seed_in_datapackage():
    dp = mc_fixture(seed=123)
    mm = mu.MappedMatrix(packages=[dp], matrix="foo", use_distributions=True)

    results = np.zeros((2, 2, 10))
    results[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        results[:, :, i] = mm.matrix.toarray()

    dp = mc_fixture(seed=123)
    mm = mu.MappedMatrix(packages=[dp], matrix="foo", use_distributions=True)

    other = np.zeros((2, 2, 10))
    other[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        other[:, :, i] = mm.matrix.toarray()

    assert np.allclose(results, other)
示例#5
0
    def load_lci_data(self) -> None:
        """Load inventory data and create technosphere and biosphere matrices."""
        self.technosphere_mm = mu.MappedMatrix(
            packages=self.packages,
            matrix="technosphere_matrix",
            use_arrays=self.use_arrays,
            use_distributions=self.use_distributions,
            seed_override=self.seed_override,
        )
        self.technosphere_matrix = self.technosphere_mm.matrix
        self.dicts.product = partial(self.technosphere_mm.row_mapper.to_dict)
        self.dicts.activity = partial(self.technosphere_mm.col_mapper.to_dict)

        if len(self.technosphere_mm.row_mapper) != len(
                self.technosphere_mm.col_mapper):
            raise NonsquareTechnosphere((
                "Technosphere matrix is not square: {} activities (columns) and {} products (rows). "
                "Use LeastSquaresLCA to solve this system, or fix the input "
                "data").format(
                    len(self.technosphere_mm.col_mapper),
                    len(self.technosphere_mm.row_mapper),
                ))

        self.biosphere_mm = mu.MappedMatrix(
            packages=self.packages,
            matrix="biosphere_matrix",
            use_arrays=self.use_arrays,
            use_distributions=self.use_distributions,
            seed_override=self.seed_override,
            col_mapper=self.technosphere_mm.col_mapper,
            empty_ok=True)
        self.biosphere_matrix = self.biosphere_mm.matrix
        self.dicts.biosphere = partial(self.biosphere_mm.row_mapper.to_dict)

        if self.biosphere_mm.matrix.shape[0] == 0:
            warnings.warn(
                "No valid biosphere flows found. No inventory results can "
                "be calculated, `lcia` will raise an error")
示例#6
0
 def load_normalization_data(
         self,
         data_objs: Optional[Iterable[Union[FS,
                                            bwp.DatapackageBase]]]) -> None:
     """Load normalization data."""
     self.normalization_mm = mu.MappedMatrix(
         packages=data_objs or self.packages,
         matrix="normalization_matrix",
         use_arrays=self.use_arrays,
         use_distributions=self.use_distributions,
         seed_override=self.seed_override,
         row_mapper=self.biosphere_mm.row_mapper,
         diagonal=True,
     )
     self.normalization_matrix = self.normalization_mm.matrix
示例#7
0
def test_distributions_only_array_present():
    dp = bwp.create_datapackage(sequential=True)
    dp.add_persistent_array(
        matrix="foo",
        name="first",
        indices_array=np.array([(0, 0), (0, 1)], dtype=bwp.INDICES_DTYPE),
        data_array=np.array([[1, 2], [3, 4]]),
    )
    mm = mu.MappedMatrix(
        packages=[dp],
        matrix="foo",
        use_distributions=True,
        use_arrays=True,
    )
    assert mm.matrix.sum() == 4
    next(mm)
    assert mm.matrix.sum() == 6
    next(mm)
    assert mm.matrix.sum() == 4
示例#8
0
def test_distributions_without_uncertainties():
    dp = mc_fixture()
    mm = mu.MappedMatrix(packages=[dp], matrix="bar", use_distributions=True)

    results = np.zeros((5, 6, 10))
    results[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        results[:, :, i] = mm.matrix.toarray()

    row = mm.row_mapper.to_dict()
    col = mm.col_mapper.to_dict()

    assert 50 <= np.mean(results[row[10], col[20], :]) <= 150
    assert 8 <= np.mean(results[row[11], col[21], :]) <= 14

    assert np.allclose(results[row[10], col[10], :], 11)
    assert np.allclose(results[row[18], col[7], :], 125)
    # Zero plus 4 fixed plus 2 variable over 10 iterations
    assert np.unique(results).shape == (25, )
示例#9
0
def test_basic_distributions():
    dp = mc_fixture()
    mm = mu.MappedMatrix(packages=[dp], matrix="foo", use_distributions=True)

    results = np.zeros((2, 2, 10))
    results[:, :, 0] = mm.matrix.toarray()

    for i in range(1, 10):
        next(mm)
        results[:, :, i] = mm.matrix.toarray()

    row = mm.row_mapper.to_dict()
    col = mm.col_mapper.to_dict()

    assert -1 <= np.mean(results[row[0], col[0], :]) <= 1
    assert 0.25 < np.std(results[row[0], col[0], :]) < 0.75

    assert results[row[1], col[1], :].min() >= 0
    assert results[row[1], col[1], :].min() <= 20
    # mean is 35/3
    assert 7.5 < np.mean(results[row[1], col[1], :]) < 16.5
    assert np.unique(results).shape == (40, )
示例#10
0
    def load_lcia_data(
        self,
        data_objs: Optional[Iterable[Union[FS, bwp.DatapackageBase]]] = None
    ) -> None:
        """Load data and create characterization matrix.

        This method will filter out regionalized characterization factors.

        """
        global_index, kwargs = consistent_global_index(data_objs
                                                       or self.packages), {}
        if global_index is not None:
            kwargs["custom_filter"] = lambda x: x["col"] == global_index

        self.characterization_mm = mu.MappedMatrix(
            packages=data_objs or self.packages,
            matrix="characterization_matrix",
            use_arrays=self.use_arrays,
            use_distributions=self.use_distributions,
            seed_override=self.seed_override,
            row_mapper=self.biosphere_mm.row_mapper,
            diagonal=True,
        )
        self.characterization_matrix = self.characterization_mm.matrix